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ABSTRACT 

The vibrational behaviour of a one ton compressor rotor being dropped into the auxiliary 
bearings in case of a failure of its magnetic bearings is reported. The auxihary bearings are ball 
bearings with a clearance between rotor and inner race. The results are based on tests and 
theoretical investigations. The most critical condition, which can occur, is a whirling motion of 
the rotor with approximately the clearance as the radius of the orbit. A whirling for an extended 
period of time must be prevented by an appropriate design. 

INTRODUCTION 

At the last Magnetic Bearing Conference in Tokyo we reported about a hermetically sealed 
motor pipeline compressor (MOPICO) [1] representing todays extreme combination of speed 
and weight concerning magnetic bearing applications (fig.l). The fully integrated design of this 
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2 radial magnetic bearing 

3 thrust magnetic bearing 

Figure 1. Cross section of the MOPICO 

145 



146 BACKUP BEARINGS 

compressor could be realized thanks to the development of a high speed motor, which is in the 
middle of the rotor, and thanks to magnetic bearings. Both bearings and motor are totally 
submerged in the natural gas working fluid. 

In the Tokyo paper we concentrated on the rotordynamic behaviour of the machine regularly 
running in magnetic bearings. The modeling of the magnetic bearings, theoretical results, such 
as natural frequencies, damping factors and transfer functions, as well as test results gained 
during the development were described. 

In the present paper the rotordynamic behaviour in case of a magnetic bearing failure is 
presented. In this case the rotor is dropped into the auxiliary bearings, which are ball bearings 
with a clearance between rotor and inner race. The vibrational behaviour of this event was 
investigated theoretically and experimentally on the real machine at almost full speed and load. 
Results of both investigations are reported. In the theoretical investigations the influence of 
some parameters on the behaviour were studied and some general rules could be deduced. 

MODELING THE ROTOR AUXILIARY BEARING SYSTEM 

THE ROTOR 

The basic data of the rotor are as follows: 

Weight: 1 ton 
Length: app. 2 m 
Maximum speed: 10000 rpm 
Frequency of the first bending mode at standstill (unsupported): 11000 rpm 

For the theoretical investigations the rotor was modeled by finite elements. The model 
consists of 21 elastic shaft elements and three rigid disks. 

THE AUXILIARY BEARINGS 

At standstill and in the case of a power failure of the magnetic bearings the rotor is supported 
on the auxiliary ball bearings (fig.2). One of them is a combined radial and thrust bearing. The 
gap between the inner race of the bearing and the rotor is approximately half the gap between the 

Figure 2. 
Scheme of the 
auxiliary bearings 

corrugated ribbon 
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rotor and the stator of the magnetic bearing. A corrugated ribbon is' inserted between the outer 
race and the housing for damping reasons. 

In the power failure case the chive is shut down immediately and the rotor is decelerated very 
fast by the aerodynamic forces on the impellers. The deceleration of the speed due to the 
aerodynamic torque can be described by the following function: 

n = n 0 / ( l + a t ) ' (1) 

HQ speed at the instant of the failure 
t time from the instant of the failure 
a deceleration factor, which depends on the load (at full load a = 0.5 l/s) 

For the rotor drop case the force from the auxiliary bearing on the rotor is modeled by 
nonlinear forces, which take into account the elasticity and damping of the ball bearing and the 
corrugated ribbon as well as the friction between the rotor and the inner race. The following 
assumptions are made for the description of the forces: 

a) The lateral inertia forces of the auxiliary bearing are negligible. Only the polar moment of 
inertia. of the inner race including balls and cage is taken into account. —— 

b) The ball bearing and corrugated ribbon have a stiffness and damping force in radial 
direction. Additionally, the corrugated ribbon has a damping force in circumferential 
direction. The housing is assumed as rigid. 

c) The rolling friction coefficient is negligible. 
d) The relative velocity at the contact point between inner ring and rotor is only determined by 

the circumferential velocities due to the rotational speeds. The influence of the lateral rotor 
and ring motion is neglected, since the deflections of both are much smaller than the radius 
of the shaft and the inner race. 

e) The friction force between rotor and inner race acts only on the rotor as long as the rotational 
speed of the inner race is smaller than the rotor speed. Once the rotational speed of the inner 
ring (which is normally zero at the instant of a failure) is accelerated by the rotor up to the 
same speed, there is no relative velocity between both, hence there is no more friction. 

f) The friction force between rotor and inner race does not influence the decelerating rotor 
speed, since the torque due to this force is much smaller than the aerodynamic braking 
torque. Hence equation (1) is taken as the speed function for the run down. 

g) Coulomb friction is assumed for the friction force between rotor and inner race. 

Considering these assumptions the nonlinear forces in radial and circumferential direction 
can be expressed as follows: 

F r = 0 r < s i 

Fr = - k i (r - si) - di r cos cc si < r < S2 . (2) 

Fr = - k i (s2--Si)-k2(r-S2)-d2?cosa r >S2 

F<|> = 0 r < si 

Ftj) = - d^ f sin a - | i F r Qring < Q r o t o r and r > si (3) 

F^ = -d§ f sin a Qring =Qrotor and r > si 

r rotor displacement 
f rotor velocity 
a angle between rotor velocity and displacement 
F r bearing force on the rotor in radial direction (= direction of the rotor displacement) 
F ,̂ bearing force on the rotor in circumferential direction 
k i combined ball bearing and corrugated ribbon stiffness (two springs in series mode) 
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k2 ball bearing stiffness alone (= auxiliary bearing stiffness if corrugated ribbon is 
flat) 

di combined ball bearing and corrugated ribbon damping in radial direction (two 
dampers in series mode) 

d2 ball bearing damping alone in radial direction (= auxiliary bearing damping if 
corrugated ribbon is flat) 
corrugated ribbon damping in circumferential direction 

s i radial gap between rotor and inner race 
S2 radial gap between rotor and inner race plus radial displacement of the outer race 

until the corrugated ribbon is flat 
p. friction coefficient between rotor and inner race 

Qring angular velocity of the inner race 

^rotor angular velocity of the rotor 

Qring is calculated by integration of the following equation: 

©ring 4ing = M- R F r (4) 

R 
ring polar moment of inertia of the inner race including balls and cage 

inner radius of the inner race 

Fig. 3 explains the damping effect of the corrugated ribbon in radial and circumferential 
direction. As the rotor moves in radial direction, the resulting force from the ribbon to the 
bearing (damping and stiffness), hence on the rotor have the direction of the rotor deflection 
(fig. 3a). This is not the case, if the rotor moves in circumferential direction (fig. 3b). An 
additional force F2 (arbitrarily assumed in the figure) arises. This forces is only present, if the 
rotor moves in this direction, hence it is a damping force. The resulting force F3 from the ribbon 
on the bearing, which is also the force from the bearing on the rotor, now also has a component 
in circumferential direction, which is vertical to the rotor deflection. 

auxiliary 
bearing 

corrugated 
ribbon 

O: center of bore 
p R: center of bearing 

W: center of shaft 

Figure 3. Forces from the corrugated ribbon on the bearing 
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The corresponding damping coefficient in circumferential direction may depend on the radial 
deflection, what is not taken into account. It may also be a function of the circumferential speed, 
as the radial damping coefficient may be a function of displacement and velocity. However, 
since all this is not exactly known, the model is simplified in the above described way. 

Other investigators like T. Ishii and R.G. Kirk [2] assume an isotropic damping for the 
support of the outer ring in the housing. As the considerations above show this must not 
necessarily be the case for our design. They also take into account the lateral inertia of the 
auxiliary bearing, which does not seem to influence their results, and the torque on the rotor due 
to the friction, which in our case of a one ton rotor can be neglected (assumption f). 

DETERMINING THE STIFFNESS AND DAMPING COEFFICIENTS 

The stiffness coefficient of the corrugated ribbon was chosen according to data of S2M. 
This stiffness was assumed as ki (ribbon and bearing in series mode), since die ribbon is much 
softer. 

In order to estimate the stiffness and damping coefficients of the ball bearing (k2, d2), the 
time history of the rotor being dropped into the auxiliary bearings at standstill was measured 
with the magnetic bearing sensors. It is shown in fig. 4. To identify the coefficients a simple 
one mass model according to fig. 5 is used in a first step. The corrugated ribbon is neglected in 
this model. 

One way to determine the stiffness k2 is from Ax=A-S2, that is the amount by which the 
spring is pressed. This yields the following formula for k2: 

k 2 = s 2 g m ' rotoi (5) 

. : . A . 

s 2 • 

A 

sensor 2 

h= 87 

A = 260nm | 0 ' 
+ 

direction of 
sensors 

sensor 1 

h = 50 (im ' . 
A = 239 nm 

note: sensor 1 and 2 have different scaling 

static equilibrium 

T = 3.4 ms 

Figure 4. Measured time history of a drop at standstill 
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Figure 5. 
Simple one mass model for the stiffness and damping identification 

Another way to determine this stiffness from the simple one mass system is by the impact 
duration T (see fig.4), which is half the period of the natural frequency of the one mass system 
(O3k=^2k2/mrotor)- Since the static deflection (hence the reading of T) also depends on the 
stiffness, the estimation has to be done in a iterative manner. Both methods yield about the same 
value. 

The damping coefficient 62 is identified from the maximum rebound. 
The identified stiffness and damping coefficients for the ball bearings (see table I) are in the 

same order of magnitude as those in [3]. 
The damping coefficient of the corrugated ribbon can be determined from damping factors 

according to the following formula, which is a quite common way to include hysteretic damping 
in mechanical systems: 

d C R = 2DcR k j /o ) (6) 

•10-4 [m] 

0.0 

t : 10 H 
CD 
E a> u ra 
Q -

o : A A 
hi = 175 nm 

\ A 1 K \ l U v 
T= 5.6 ms\ 

4.0 -I 
338 nm 

static equilibrium 

0.0 0.02 0.04 0.06 

time —-> 

0.08 [s] 

Figure 6. Calculated time history of the rotor drop at standstill 
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A damping factor DCR of 15% and a frequency of Q)=350rad/s (= natural frequency of half 
the rotor mass supported on the corrugated ribbon, which is an assumed value for the frequency 
of the dominating vibration) yield a value for dcR, which is slightly above d2. Hence a radial 
damping coefficient di (combined ball bearing and ribbon damping, two dampers in series 
mode) equal to d2 will not be far from reality. In the further investigations we assume this value 
for di. ~ 

In the next step a calculation of the rotor being dropped at stand still was carried out with the 
complete finite element model and the above determined stiffness and damping coefficients, 
which are listed in table I . Fig. 6 shows the result. The coincidence with the measured time 
history was considered as sufficient, so we did not try to improve it by further changing the 
coefficients. 

For the circumferential damping coefficient d^, which has practically no influence on the 
vibrational behaviour of a drop at standstill, a value of the same order of magnitude as for the 
radial damping coefficient seems to be realistic. However, since it is not exactly known, this 
value is varied in the following investigations. 

The natural frequency of the ball bearing alone supported on the corrugated ribbon is about 
1000 Hz. This shows that our assumption of neglecting the lateral inertia of the bearing is valid, 
since the dominating effects of the rotor drop are in a much lower frequency range. 

Our damping coefficients are far below the optimal value (only about 5%-10% of this 
value), which can be determined according to a formula given in [2], However damping 
coefficients in the order of magnitude of our values, above all for the circumferential direction, 
are sufficient, as our results will show, and can be achieved with a simple corrugated ribbon. 

THEORETICAL RESULTS 

All results presented here and also in the previous paragraph were calculated with the 
nonlinear part NOLIN of the rotor dynamic programme package MADYN [4]. 

All values for the parameter of the auxiliary bearing are shown in table I . The unbalance of 
the rotor was assumed according to the unbalance during the tests (see next paragraph), that is 
an unbalance of 0.005kgm in the rotor middle and 0.0018kgm at each impeller. All unbalances 
are in the same direction. The unbalance and also the initial conditions (that is the position and 
velocity of the shaft, which is vibrating in a steady state condition, at the instant of the magnetic 
bearing failure) do not have a big influence on the results, as long as the unbalance has a 
normal order of magnitude. 

TABLE 1 - Bearing parameter • 

Parameter value determined by variation range 

si [mm] 170 given design -

S2 [mm] 250 given design 150 - 350 
R[mm] 95 given design -

© ring [kgm2] given design 0.01 - 0.02 

0.5 assumption 0.3 - 0.8 

ki [N/m] 5.7 107 ZZWH-J measurement -

k2[N/m] 4.3 108 i.*>/oV. measurement 108-109 
di [Ns/m] 4.3 104 ass., meas. -

d2 [Ns/m] 4.3 104 MSVV-S/̂  measurement -

(ty [Ns/m] 0 assumption 0 - 4.3 104 
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Fig.7 shows the orbit of the rotor in the auxiliary bearings at the thrust end side for a drop at 
almost full speed without circumferential damping. The figure shows, how the rotor is 
accelerated in revers direction due to the friction and how it starts whirling. Because of the 
whirling the auxiliary bearing is loaded with centrifugal forces, which are about six times the 
bearing load due to the weight. The magnitude of the centrifugal force is determined by the 
frequency (app. 63 Hz) and radius of the whirling. This high load can destroy the bearing, if it 
acts for an extended period of time. 

This result shows how important the circumferential damping of the corrugated ribbon is. If 
there is no circumferential damping as in our example, the whirling goes on indefinitely. A 

damping coefficient of d^ = 1 10^ Ns/m, which is a much smaller value than the coefficient in 
radial direction, stops the whirling after 7 cycles (see fig. 8). In case of higher values the rotor 
does not start whirling at all. 

In case of very large unbalances (five times higher than in our investigation) the rotor may 
also start whirling in forward direction. 

Fig. 9 to 12 show the influence of the clearance S2, the ball bearing stiffness k2, the moment 
of inertia of the inner ring 0 and the friction coefficient p. on the radius and frequency of. the 
whirling. It can be seen that decreasing the clearance or increasing the stiffness reduces the 
whirling radius and increases the frequency. These two effects have an opposite influence on 
the centrifugal force. The resulting centrifugal force is lower in the case of smaller clearance and 
higher in the case of larger stiffness. Decreasing the friction and the inner ring inertia decreases 
both, the radius and the frequency. For values below those in the figures a whirling is even 
prevented. 

In all presented results the rotor whirls in a parallel mode with a frequency below the first 
natural frequency of the rotor supported on the auxiliary bearings (corrugated ribbon flat). The 
rotor can not whirl above this frequency in a parallel mode, since in such a case it would have 
the tendency to center itsself and would no longer be in contact with the inner race. In case it 
whirls in a conical mode the whirling frequency could be higher. However it is not yet clear, 
under which conditions such a whirling occurs. 

Figure 7. 
Calculated orbit of the 
rotor being dropped at 
full speed, 
no circumferential 
damping 
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Figure 8. 
Calculated orbit of the 
rotor being dropped at 
full speed, 
circumferential damping 
d^l^Ns/m 

TEST RESULTS 
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The drop test was carried out at almost full speed (n=9300rpm) and almost full load. The 
rotor was dropped by switching off the magnetic bearing amplifiers. The motor was shut down 
simultaneously. 

Fig. 13 shows the measured orbit at the thrust end auxiliary bearing. The rotor also starts 
whirling but stops after seven cycles. The whirling frequency is app. 37Hz. The maximum 
deflection is much larger than in the calculation. This is because the auxiliary bearing was 
mounted slightly eccentric, when the test was carried out. However what is completely 
surprising is the whirling direction. It is not in the reverse direction to the rotation of the shaft as 
was expected from the simulation. The rotor whirls in the same direction as the shaft rotates. 

This can not be explained by a large unbalance, since the unbalance was approximately as 
assumed in the simulation. For a much larger unbalance it would not have been possible to 
operate the rotor in magnetic bearings at 9300rpm. 

Figure 9. 
Influence of different 
clearances S2 on the 
whirling radius and 
frequency 
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Figure 10. 
Influence of different 
stiffness on the 
whirling radius and 
frequency 
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Figure 11. 
Influence of different 
moments of inertia of 
the inner ring on the 
whirling radius and 
frequency 
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Figure 12. 
Influence of different 
friction coefficients m 
on the whirling radius 
and frequency 

"2r 
2 

Z5v 

4.508-1 

4.308-4 

4.108-4 

3.908-1 

3.708-4 

3,508-4 

3.30e-t 

3.108-4 

3.908-4 

2.708-4 

2.508-4 

• 2.308-4 

• 2.108-4 

• 1.908-4 

• 1.708-4 

• 1.508-4 

0.3 0.4 0.5 0.6 0.7 O.S 0.9 

friction coefficient, u [-] 

3 

'•5 

3 

I [Hz] 

rim] 

154 



Behaviour of a One Ton Rotor Being Dropped into Auxiliary Bearings 155 

Figure 13. 
Measured orbit of the 
rotor being dropped, 
n=9300 rpm 
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Other possible forces to compel the rotor to whirl in forward direction are labyrinth seal 
forces and electromagnetic forces in the motor. The labyrinths however are too small, as a 
calculation including the labyrinths modeled according to [5] showed. 

Electromagnetic forces will still be present due to the collapsing electromagnetic fields after 
the motor shut down. One has to consider also, that the time from switch off to the end of the 
whirling is only a few tenths of a second and that the manual motor shut down could have been 
slightly later. 

From [6] is known, that lateral vibrations in induction motors with a squirrel cage may 
cause cross coupling forces. To force the rotor in forward direction a cross coupling stiffness in 
the order of magnitude of 107 N/m in the middle of the rotor is necessary. An estimation of the 
cross coupling stiffness according to [6] at nominal conditions of the motor for a dropping 
rotor (the value also depends on the kind of deflection of the rotor) yields a value of about one 
third of the required cross coupling stiffness. A cross coupling stiffness due to the collapsing 
field can not be estimated. The formulas in /6/ however show that much larger values are 
possible. Further tests to clarify the cause of the forward whirling will be carried out. They 
were not possible up till now, since the machine had to be removed from the test stand right 
after the test before the results could be evaluated. 

CONCLUSIONS 

The most severe condition that can occur, if the rotor drops into the auxiliary bearings at full 
speed and full load, is a whirling with approximately the clearance between ball bearing and 
rotor as the radius. It is caused by an acceleration of the rotor in revers direction due to the 
friction between inner ring and rotor and generates a very high load on the auxiliary bearing. 
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Very large unbalances in an order of magnitude, which can not occur in normal operation, or 
other forces like aerodynamic forces, or electromagnetic forces from a motor can also compel 
the rotor to whirl in forward direction. 

The whirling must be prevented or stopped after a short time. In our case this is achieved by 
a corrugated ribbon, which creates a circumferential damping. Other means to prevent a 
whirling is a sufficient low moment of inertia of the inner ring and a low friction coefficient 
between inner ring and rotor. Small clearances and a low ball bearing stiffness can reduce the 
load in case of a whirling. 
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