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ABSTRACT 

The dynamic properties of active magnetic bearings are functions of rotor excitation 
frequencies, not rotor speed. Existing rotordynamic analysis requires trial-and-error itera­
tions to find rotor-bearing system damped natural frequencies. A two-level, finite-element-
based rotordynamic computer program with an efficient root-searching algorithm for stability 
analysis has been developed. Given an initial estimate of the first natural frequency, the 
program is able to automatically search for all the natural frequencies. A numerical example, 
which has several very close natural frequencies, is presented to demonstrate the program's 
capability. 

INTRODUCTION 

Recent advances in active magnetic bearing (AMB) technology present a new challenge 
to rotordynamicists. However, many rotordynamicists are not familiar with mathematical 
modeling of AMBs, which is traditionally performed in electrical engineering and control 
languages. Chen [1] has suggested that AMBs be treated as locally controlled devices similar 
to other types of bearings that provide load capacity, stiffness, and damping for rotor support. 
AMB stiffness and damping coefficients have been denned in a closed-form solution in the 
frequency domain [2]. Unfortunately, rotordynamic programs developed during the last two 
decades for conventional bearings are awkward to use with AMBs since: 1) the stiffness and 
damping coefficients of AMBs are a function of rotor whirl frequency, not rotor speed; and 
2) AMB reacting forces are proportional to displacements measured at sensor locations offset 
axially from the bearings [3]. 

One approach to performing rotordynamic analysis of AMBs is a state-space method 
that combines the differential equations representing the bearing controllers with the rotor 
equations of motions [2,4]. Since this method usually produces mixed-up eigenvalues of the 
rotor and the controller, efforts are required for sorting out the rotor modes. Also, coding a 
general computer program to accommodate all possible controller variations is difficult. 

C.-P. Roger Ku and H. Ming Chen, Mechanical Technology Incorporated, 968 Albany-Shaker Road, 
Latham, New Yoric 12110 

133 



134 STABILITY AND MODELING I 

In another approach, Chen et al. [5] developed an algorithm in which a magnetic 
bearing subroutine for all AMBs in a rotor system was written according to the AMB control 
scheme. The AMB controller is represented by its component transfer functions. This 
subroutine, which provides the AMB stiffness and damping coefficients, is compiled 
separately and called by a main rotordynamic program. Although the algorithm has been 
successfully applied to an AMB system with a submerged rotor [6,7], the damped natural 
frequency searching scheme was based on trial and error. Finding all potentially unstable 
modes in this manner is time consuming, especially when a system is implemented with 
notch filters and has several modes that are closely spaced at the notch [8]. 

To eliminate the trial-and-eiror process, an efficient algorithm for calculating damped 
natural frequencies of a rotor supported by AMBs has been developed and is presented in this 
paper. In this algorithm, the Secant method is used with a two-level rotordynamic computer 
program. The program automatically searches for the damped natural frequencies in AMB 
systems. A numerical example using an industrial pump supported by AMBs is presented to 
demonstrate the effectiveness of the algorithm. 

FORMULATION OF SYSTEM DYNAMICS 

A rotor-bearing system is modeled to consist of four parts: shaft, casing, disks, and 
bearings. The shaft is considered to be a flexible beam and is divided into several elements 
that have distributed mass and elasticity. Each shaft element consists of two stations. Each 
station has four degrees of freedom (DOF) of motion - two lateral and two angular. By using 
a finite-element method [9], each element is represented by an 8 x 8 mass matrix and an 8 x 8 
stiffness matrix. 

Machine casings are generally much stiffer than their rotors. The predominant flexible 
natural frequencies of a casing are usually well above the range of rotordynamic interest! 
Casing mass affects system rotordynamics, especially when the casing is light and is not 
rigidly tied to a large foundation. To account for the mass effect, modeling the casing as a 
rigid body with six DOF at its center of gravity is adequate [6, 7]. The casing is assumed to 
be mounted on flexible supports, e.g., elastomer mounts, tied to the ground. 

The AMBs are modeled as force elements acting pn the shaft at bearing locations. 
Each AMB has two independent control axes. The electromagnetic force exerted on the rotor 
along a control axis in the X-direction, F , is defined as: 

Fx = K i I + K m ( X l b - X s b ) (1) 

where 

= current stiffness 
I = dynamic control current 
K m = magnetic stiffness 
X ^ = rotor displacement at bearing center 
X s b = stator displacement at bearing center 

Both Kj and K^ are functions of bearing size, pole configuration, and bias (steady-
State) currents in the magnetizing coils. The control current, I , which modulates the bias, can 
be related to a displacement feedback by: 

I = G(s) (X, - X s s ) (2) 
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where 

G(s) = a series of component transfer functions multiplied together 
= rotor displacement at sensor location 

X s s = stator displacement at sensor location 

Note that G(s) is dependent on rotor excitation frequency and is programmed in a user-
supplied AMB subroutine. 

Combining the rotor [9] and casing [6, 7] formulas with the AMB control represented 
by the above equations, the system dynamics can be written as: 

[M s] {U} + ([CJ + [CJ) {U} + ([KJ + [KJ) {U} = {F} (3) 

where 

[MJ = rotor mass matrix 
{U} = system state vector 
[CJ = rotor damping matrix, including gyroscopic effect 
[CJ = bearing damping matrix 
[KJ = rotor stiffness matrix 
[KJ = bearing stiffness matrix 
{F} = system forcing vector 

Matrices [KJ and [CJ contain the magnetic bearing properties that are calculated by the 
AMB subroutine for given excitation frequencies. Matrix [CJ usually contains a gyroscopic 
effect and is a function of rotor rotating speed. 

STABILITY ANALYSIS METHOD 

To perform a stability analysis of a rotor-bearing system, an eigen solution to Equation 3 
must be found: For a system consisting of only conventional bearings, calculating the natural 
frequencies is straightforward since [KJ and [CJ are matrices with constant elements. 
However, if any matrix in Equation 3 depends on excitation frequencies, such as AMB stiffness 
and damping coefficients, a numerical iteration scheme is required. As illustrated in Figure 1*, 
the results of a sample calculation show that the natural frequencies coincide with the AMB 
excitation frequencies. This calculation is equivalent to finding the roots of a nonlinear 
matrix-algebra equation, A, as follows: 

A(Q)= Q - Im (X(Q)) = 0 (4) 

where 

Q = natural frequency 
Im = imaginary part 
X = system eigenvalues, complex numbers 

Several numerical algorithms can be employed to solve the above equation. The most 
popular algorithm is the Newton-Raphson method. However, it requires evaluating the 

*For ease of readability, all figures and tables are included at the end of this paper. 
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differential of Equation 4, i.e., dA(Q)/dft. For most rotor-bearing systems, obtaining a 
closed-form formula for dA(Q)/dQ is difficult. If dA(Q)/dQ = 0, convergence will be slow. 
To reduce computation time, the Secant method is employed instead of the Newton-Raphson 
method. In the Secant method, the evaluation of the differential is not required. The follow­
ing equation presents the algorithm: 

= - f ACQ^) - ^ / [ A C C V , ) - A(Qn.2)] (5) 

where 
n = number of iterations 
f = a relaxation factor, usually equal to one 

To use Equation 5, the user must provide a starting estimate for Q v If the desired 
natural frequency, e.g., the first or second frequency, is not equal to the value of Qj, i.e., 
ACQ,) = 0, the program 1) automatically assigns the value of as Q 2 = Im (A^Qj)) and 2) 
proceeds to the next natural frequency calculation. After these two steps, the program uses 
Equation 4 to calculate Q a for all n > 2. 

During the iterations, the rotor rotating speed is kept constant. To reduce computation 
time, the computer program saves the matrices that are not a function of excitation frequency, 
e.g., [K s ] , [C s], and [MJ. For each iteration, the program only calculates the bearing dynamic 
properties [KJ and [CJ, and performs the matrix manipulations. 

NUMERICAL EXAMPLE 

To illustrate the use of the above stability analysis method for a rotor-magnetic-bearing 
system, an industrial pump [8,10] is used here as an example. The pump, which was designed 
to run at 3600, is shown as a rotordynamic model in Figure 2. This system has two identical 
radial AMBs. Figure 3 is an AMB block diagram for one control axis. Note that a notch filter 
with the center frequency at 60 Hz and a Q-factor of 10 is implemented in series with other 
control components. Figure 4 presents the dynamic properties of the radial AMB. 

Chen and Ku [8] have shown the notched system to be unstable. Figure 5 is an undamped 
critical speed map on which the AMB stiffness curves are overlaid. Four extra interactions 
occur near the operating speed due to the notch filter, two slightly below and two slighdy 
above the operating speed. Each interaction implies two vibration modes, one forward and 
one backward. The two intersections below the operating speed represent four modes and are 
unstable [8]. To find the unstable modes accurately, an eigenvalue search analysis below 
60 Hz was performed using the Secant method. The results are presented in Table I . As 
expected, the four unstable modes were very close in frequencies and all had a positive 
growth factor. 

For each natural frequency, the computer program required several iterations to obtain 
convergent results. As in other multistep root-search algorithms, the iteration times depend 
on system conditions, convergence criteria, and starting estimates. A good starting estimate 
can be obtained by plotting an undamped critical map, such as that shown in Figure 5. For an 
AMB system implemented with a notch filter, a small convergence criterion and a relaxation 
factor less than one are recommended. Therefore, more iterations are necessary to obtain 
convergent results. For a normal system with the relaxation factor equal to one, three to five 
iterations are adequate to obtain an accurate natural frequency. Figure 6 shows an iteration 
history for the first eight natural frequencies of the example system without the notch filter. 
Table I I presents the numerical values of those damped natural frequencies. . 
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CONCLUSIONS 

A two-level, fmite-element-based rotordynamic computer program employing the 
Secant method for stability analysis of AMBs has been developed. Given an initial estimate 
of the first natural frequency, the program automatically searches for all the damped natural 
frequencies. The numerical example presented herein, which has several very close natural 
frequencies, has demonstrated the effectiveness of this method. 
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Figure 1. Sample Results of a Stability Analysis 
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TABLE I . NATURAL FREQUENCIES AT 3600-rpm ROTATING SPEED 
WITH NOTCH FILTER 

Mode 

Eigenvalues 

Mode 
Real Part 
(1/sec) 

Imaginary Part 

Mode 
Real Part 
(1/sec) (1/sec) (Hz) 

1 - Backward 637.1 356.01 56.66 
2 — Forward 660.4 356.17 56.69 
3 - Backward 313.4 360.20 57.328 
4 - Forward 309.6 360.21 57.329 

P412 

TABLE I I . NATURAL FREQUENCIES AT 3600-rpm ROTATING SPEED 
WITHOUT NOTCH FILTER 

Mode 

Eigenvalues 

Iteration 
Times Mode 

Real Part 
(1/sec) 

Imaginary Part Iteration 
Times Mode 

Real Part 
(1/sec) (1/sec) (Hz) 

Iteration 
Times 

1 - Backward -151.7 626 99.7 5 
2 - Forward -153.9 628 99.9 2 

3 - Backward -446.7 1331 211.8 7 

4 - Forward -441.4 1375 218.8 2 

5 - Backward -219.9 1858 295.6 4 

6 - Forward -211.4 1909 303.8 2 

7 - Backward -70.8 4419 703.3 3 

8 - Forward -72.3 4567 726.8 2 

P412 
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