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ABSTRACT 

Experimental modal testings are performed in order to identify the modal parameters 
which are essential to model building of the open loop system of the rotors. By 
separating the forward and backward modes in two sided frequency domain, it is shown 
that accurate modal parameters can be obtained, resulting in accurate modelling. It is 
shown that the modal testing method allows clear physical insight into the behaviors of 
the forward and backward modes, particularly in the case of the isotropic rotor treated in 
this research. A suboptimal output feedback controller is designed based on a reduced 
order model and is applied to a flexible rotor. The instability problem arising from the 
spillover effects caused by the uncontrolled high frequency modes is prevented through 
the constrained optimization by incorporating the spillover term into the performance 
index. The efficiency of the proposed identification and control method is demonstrated 
experimentally with a flexible rotor by using a magnetic bearing as a force actuator. 

INTRODUCTION , 

In recent years, advanced development of magnetic bearing technology enables the 
active control of rotor bearing systems to be practical with relatively low cost and high 
reliability [1]. Magnetic bearing is considered as one of the most effective force actuators 
in identification and control of rotating machines, since it can deliver control force 
without any mechanical contact. ' 

A few attempts have been made to develop modal testing methods for rotating 
machinery by using classical modal testing method [2-4] and studied the dynamic 
characteristics of forward and backward modes [5-7]. Recently, Lee developed a complex 
modal testing theory for modal parameter identification of rotating machinery [8]. In 
control applications, Gondhalekar et al. investigated an electromagnetic damper as 
applied to a transmission shaft passing through a critical speed [9]. Anton and Ulbrich 
performed an output feedback control using a magnetic bearing in asymmetrical rotor 
bearing system [10], and Salm and Schweitzer discussed spillover effects resulting from 
the control of a flexible rotor bearing system in output feedback [111. However, most of 
the previous works essentially have not accounted for the distributed 
flexible rotors, including control and observation spillover problem [12 
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124 STABILITY AND MODELING I 

In this study, the constrained output feedback controller, which primarily emphasizes 
the stabilization against observation/control spillover effects through the constrained 
optimization, is experimentally studied based on the model which is obtained through the 
complex modal testings by using a magnetic bearing as a force actuator. It is also 
experimentally shown that complex modal testing not only allows clear physical insight 
into the forward and backward modes, but also enables the separation of those modes in 
the frequency domain so that effective modal parameter identification possible.. 

MODELLING AND MODAL ANALYSIS 

The equations of motion and of observation for a flexible rotors can be written as [13] 

M(x)q(x,t) + C(x)q(x,t) + K(x)q(x,t) = H(x)u(t) 
y(t) = G1(x)q(x,t) + G2(x)q(x,t) 

(la) 
(lb) 

where M, C and K, mainly consisting of partial differential operators and symbolic 
functions, represent the mass, damping and stiffness operators, respectively. Each 
operator is neither symmetric nor positive definite due to gyroscopic effect, 
internal/external damping and asymmetric bearing property. Gp G^ and H are the 
displacement sensor, velocity sensor and actuator influence operators, respectively, 
consisting of almost Dirac delta functions since the control devices are localized, e.g. point 

sensors and actuators, in practice, q = [y z]*' is the associated distributed displacement 
vector along the shaft, y = [q^ q^]1, e R r the output vector, and u = [u^ u*]1 e R m the 

J J 

input vector. The displacement q is subject to given initial and boundary conditions. 
Introducing the state p = [q* q t ] t

) Eq.(l) can be written, in state space form, as 

E(x)p(x,t) = A(x)p(x,t)+B(x)u(t) and y(t) = C(x)p(x,t) 

By using modal transformation 0{-) = [<ip^,-> <^2r> <V'2' ' > 

(2) 

and the 

modal expansion p(x,t) = S <^(x)(j(t), a set of modal equations can be obtained as 
i = l 

C(t) = AmC(t) + BtTiu(t) and y(t) = CmC(t) 
where 

m m 
(3) 

A m = * A *)> B m = C m = ^ * = K *>2 3̂ 

and C = K j C2 C3 t : is the complex modal state vector. The eigenfunction 
and the adjoint ^ satisfy the biorthonormality relation 

<^ i , E^> = 6- and A ^ > = A j ^ (4) 

Dividing the modal state into three classes, primary, secondary and residual modes, Eq. 
(3) can be rewritten,.neglecting the residual modes, as 
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M = V p ( t ) + B p u ( t ) ' ^ ( t ) = AsCs(t) + 

y(t) = cpcp(t) + cscs(t) 

(5a) 

(5b) 

where the np-dimensional primary modal state vector is made up of the states of 
significance, forming a modal subspace. The secondary modal state C consists of the 
modes of significance in stability but insignificance in control performance. In 
rotor-bearing systems, especially in overhung type rotors or rigid rotors with relatively 
soft bearings, the primary and secondary modes are relatively well separated so that the 
two-time scale assumption might be well justified. By applying the singular perturbation 
to the secondary modes, further model reduction can be achieved so as to give 

£0(t) = A0C0(t) + B0u(t) and y(t) = C0C0(t) + D0u(t) (6) 

where A 0 = A p , B 0 = B p , C 0 = C p and D 0 = - ( ^ A ^ . 
Introducing the Laplace transform Y(s) and U(s) of the vectors y(t) and u(t), Eq.(5) 

may be transformed into 

Y(s) = H(s)U(s) 
or 

-Qy(s)- f H (s) II (s)l ' u yW 
[Qz(s)J H (s) II (s) 

L zyv ' zzK JJ i u,(.)J 

(7a) 

(7b) 

where the transfer function matrix H(s) is given by, from equation (5), 

H ( s ) = c p ( S I - A P r l B P + c

s

( s I - A

s

r l B

s 

n. 

k=l s - A,. 

n p + n s 

k = n p + l s - Ak 

(8a) 

(8b) 

For isotropic systems (Hyy^ H z z , = ~Hyz), by introducing the complex notation 

y c(t) = q y(t)+jq z(t) and u c(t) = u (t)-l-juz(t), Eq.(7) can be written as 

Yc(s) = Hc(s)Uc(s) (9) 

where H (s) = H (s)+jH (s). Y and U are the Laplace transforms of y and u , c yy zy c c c c 
respectively. 

OUTPUT FEEDBACK CONTROLLER DESIGN 

Consider an optimal dynamic compensator of the form 

z(t) = Azz(t) + Bzy(t) and u(t) = Czz(t) + Dzy(t) (10) 
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with the performance index 

J = / ^ (^Qo^+^QjZ+u ' l ^u+z 'R j i Jd t (11) 
n „ 

where z e R is the compensator state vector, and QQ and Qj are positive semi-definite, 

and RQ and R j are positive definite. Augmenting the state of the system with the 

compensator equation, one obtains 

C(t) = ApC(t) (12) 

where 

c(t) = [cjjw zV)]4, A = A + BKC 

A = 
A 0 0 

0 0 
, B = 

B 0 0 

0 I 
,c = 

c0o 
0 I 

, K = z z 

LB A 
z z 

K = (' " DzD0)",Dz. 6z " ( I " DzD0)"ICz. K = H l ~ W • K = Az + Bz

D0Cz 

It is well known that the closed loop poles approximately consist of the eigenvalues 

A[A ] and A[A +B D C ] [14]. Even if Re A[A 1 < 0 by design and Re A[AJ < 0, it does 

not necessarily lead to the stability condition for the secondary modes 

Re A[A s + B s D z C s ] < 0 (13) 

The observation and/or control spillovers are unavoidable, that is B # 0 and C, # 0, 
s s 

since the actuators or sensors cannot be located exactly on the nodes of all secondary 
modes. The constrained output feedback control offers a remedy to the spillover problem 
by minimizing the modified performance index, using the trace identity, as 

J a = tr[P] + t r tF^K,? ) ] + tr[S(A s+B sD zC s)] + t r [ T { D z - D z ( I + D 0 D z r
1 } ] (14) 

if initial conditions are distributed on the surface of the unit sphere, where P satisfies the 
matrix Riccati equation 

Q = 

+Bkc) + Q + CWRKC 
Q0 o R 0 0 

o Q^ 0 Rp 

(15) 

and S = Diag(si, S2,' , s ) is the positive definite weighting matrix to the 
s 

spillover term. Each element of S represents the weighting for the corresponding mode 
and F and T are the Lagrange multiplier matrices of appropriate dimensions. The 
necessary conditions, using the matrix minimum principle, are obtained from [13 

a a a 
03 

dF dP dK dT OK 
= 0 (16) 



Flexible Rotor System Identification and Vibration Control by Using a Magnetic Bearing 111 

EXPERIMENT 

EXPERIMENTAL SET-UP 

Figure 1 shows the schematic of experimental setup. The flexible shaft, 680 mm long 
and 30 mm in diameter, assembled with four rigid disks is supported by two self-aligning 
type of radial ball bearings. The system is driven by a DC-servo motor. A magnetic 
bearing as a force actuator is located at the free end of the overhung rotor and it consists 
of four identical radial electromagnets equally spaced around a 160 mm diameter disk. A 
pair of eddy current type proximity probes located at 0.191 m apart from the driven end 
as shown in.Fig. 1 measure the vertical. (Y) and horizontal (Z) shaft displacement. In 
order to measure the control force exerted on the rotor, a three axes tool dynamometer is 
placed between the mount fixture and the magnetic bearing. 

The controller is a hybrid system consisting of analog circuits and a digital computer. 
The power amplifiers and compensation networks constitute the analog components 
which supply the control current to the magnets and ensure the linear conversion between 
the control current i(t) and the generated control force f(t), i.e., f(t) = kii(t). Current 
stiffness kj is 145.5 N/A when the steady state current is 0.5 A and the total airgap is 1.5 
mm. A 16-bit personal computer (IBM-PC AT) equipped with 12-bit data translation 
device is the main part for the digital control implementation. 

MODAL PARAMETER IDENTIFICATION BY COMPLEX MODAL TESTING 

The modal properties of the rotor bearing system are identified through a series of 
modal testings. A sequence of random Gaussian signal generated by computer is D/A 
converted, and transformed to current through the power amplifiers, driving the magnet 
and exciting the rotor system. At the same time the measured magnetic force and 
displacement are low-pass filtered with cut-off frequency of 400 Hz, A/D converted and 
then stored on the memory for further processing. The experiments are repeated at 
several operating speeds. 

In Figs. 2 and 3, typical measured frequency response functions are plotted. When the 
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Figure 1 Schematic of experimental set-up 
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rotor is at rest, modal frequencies in two perpendicular directions are identical as shown 
in Fig.2(a), confirming that the test rig can be regarded as an isotropic system. On the 
other hand, the representation in the complex coordinates yields the separation of two 
modes into the positive and negative frequency modes in the two-sided frequency domain 
as shown in Fig.2(b). In this case, the use of complex notation is particularly important 
because it enables the accurate identification of the modal parameters as well as it reduces 
the computational effort by reducing dimensional size by half [8]. 

As the operating speed increases, the completely coupled modes become separated into 
the forward and backward modes since the gyroscopic moment works proportional to the 
rotational speed. However, those two modes are heavily overlapped in the one-sided 
(classical) co-quad plot, Fig.3(a). On the other hand, the forward and backward modes 
are completely separated in the two-sided co-quad plot, Fig.3(b), the forward on the 
positive frequency domain and the backward on the negative frequency domain, so that 
the accuracy of the modal parameter extraction is much improved. 

It should be noted that, when the rotor is at rest, the transfer frequency response 
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Figure 2 Frequency response functions (Q = 0 rpm) 
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100 200 

function H is negligibly small in magnitude compared with the direct frequency 
response function but, as the rotor starts rotating, the transfer frequency response 
functions are no longer negligible due to the growth of gyroscopic moments. In Table 1, 
the modal parameters, which are extracted by multimode curve fitting of measured 
frequency response functions, are summarized. 

CONTROL EXPERIMENTS AND RESULTS 

Using the identified modal parameters at 3000 rpm, the control model is constructed as 

V 
-3.124 -395.495 0.0 0.0 
395.495 -3.124 0.0 0.0 
0.0 0.0 -3.001 371.808 
0.0 0.0 -371.808 -3.808 

-26.526-857.341 0.0 0.0 
857.341 -26.526 0.0 0.0 
0.0 0.0 -31.416 834.658 
0.0 0.0 -834.658 -31.416 
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TABLE I Identified modal parameters 
(F=forward mode,B=backward mode) 

Rotating Mode 
speed 
(rpm) 

Natural Damping 
frequency ratio 

(Hz). 

0 
IF 
IB 
2F 
2B 

61.650 
61.494 

135.020 
135.030 

0.00836 
0.00931 
0.03470 
0.03220 

3000 
IF 
IB 
2F 
2B 

62.945 
59.175 

136.450 
132.840 

0.00790 
0.00807 
0.03094 
0.03764 

V 
' 0.0 -

1.060 
0.0 

-1.000 

U X J L J i i \ j j j ^ u I U U J J a u u w i j o c u l u u p c i g c i 

(F=forward mode, B=backward mode) 

Mode 
Open loop 
System 

Close loop 
System 

N S = 0 S = 0.41 

IF -3.124+j395.50 -33.465+j394.32 -20.468+j'395.40 
lB-3.001-j371.81 -31.604-j.370.78 -20.006-j371.71 

2F-26.526+j857.34 1.881+j858.91 -10.110+j857.73 
2B-31.416-j834.66 ^1.304-j836.08 -15.490-j835.04 

0.0 
1.000 
0.0 

V 
0.767 0.0 0.803 0.0 
0.0 0.767 0.0 0.803 KICT*, C s 

0.0 0.520 
-0.520 0.0 
0.0 -0.497 
0.497 0.0 

0.675 0.0 0.690 
0.0 0.675 0.0 

0.0 
0.690 xlO -A 

The output feedback controller is designed based on the identified modal parameters at 
3000 rpm by minimizing the quadratic penalty index (14) with QQ = 10001, RQ = I , and 

S = si where the first forward and backward mode pair are chosen as the primary modes 
and the second mode pair as the secondary modes. As shown in Table 2, the 
unconstrained feedback controller (S = 0) makes the closed loop system unstable since 
one of the secondary modes (forward mode) has negative damping. Hence it is required to 
make the secondary modes be stable by constrained optimization. As the parameter s 
increases, the second modes become stable while the primary modes become less stable. 
As shown in Table 2, the controller with s = 0.4 is found to be satisfactory for the dual 
objectives, performance and stability. To implement the controller in.a digital computer, 
the continuous time controller is discretized by using the bilinear transformation with the 
1 kHz sampling rate. 

Figure 4 shows the impulse response of the flexible rotor when the rotor displacement is 
measured at the sensor location when the computer generated impulsive force with 
magnitude of 70 N and duration of 0.01 sec. is applied at the actuator position in the 
vertical direction. The results are compared with the simulation, results obtained 
numerically based on the experimentally determined model. As shown in Fig.4(a), the 
damping ratio of the open loop system is so small (about 0.008) that the transient 
vibration tends to sustain for a long period of time. Figure 4(b) shows the impulse 
response, along with the simulation results, when the constrained output feedback control 
acts. The increase in damping due to control is notable. Figure 4(c) shows the impulse 
response when the unconstrained output feedback control acts. Notice that in the 
unconstrained control system the second mode becomes unstable due to the spillover 
effects. 

The uncontrolled magnitude response due to the initial unbalance in the vicinity of the 
first critical speed is very large as shown in Fig.5. On the other hand, the magnitude of 
the controlled response is satisfactory, in particular, near the critical speed. 
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CONCLUSION 

131 

In this study, the complex modal testing method[5] and suboptimal vibration control 
method[10] are experimentally verified by using a magnetic bearing. The developed 
magnetic bearing is an effective non-contacting type force actuator in modal testing and 
control of the rotating machines during operation. By separating the forward and 
backward modes in two-sided frequency domain, it is shown that more accurate modal 
parameters can be estimated. From the experimental results, it is concluded that the 
proposed controller can be used effectively in suppressing the transient and steady state 
vibrations, while preserving stability against spillover effects. 
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