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ABSTRACT 

The tuning job of the compensator for levitating flexible rotors supported by active magnetic 
bearings (AMB) concerns providing good damping effect to the critical speed modes while 
avoiding the spillover problem on the instability of higher bending modes. In this paper, an idea 
for design of the control law of the compensator based on utilizing a third order low pass filter 
(LPF) is proposed to essential enable elimination of the spillover instability. According to the 
proposed design method, good damping effects for the critical speeds are obtained by the usual 
phase lead/lag function. Stabilization for all of higher bending modes is completed by the 
additional function of the 3rd order LPF due to its phase lag approaching about -270 degree in 
the high frequency domain. This idea is made clear by experiments and simulations. 

INTRODUCTION 

To design control network driving active magnetic bearings (AMB) for flexible rotor 
levitation, it is important to consider rigid mode levitation, controllability of flexible modes at 
critical speeds and stability margin for high frequency bending modes. For instance, a design of 
super critical compressors supported by AMBs illustrates this point. In the first design phase, 
rigid mode levitation performance is determined. Next, well damping ratio of the first bending 
mode necessary to pass the critical speed is determined according to Q-value criteria. Finally, 
the PID controller transfer function is tuned so as to satisfy these two requirements and so as to 
avoid higher frequency instability beyond. 2nd bending modes. It is called a spillover problem. 

Usually, the PID control law with optional notch filters and/or low pass filters is used for 
tuning. Otherwise, the increase of the internal damping of the rotor is improved. However, 
this design method based upon the phase lead/lag function is not free from the spillover 
problem. However, the presented method can provide a highly robust control system for the 
higher modes and satisfactory performance for the controlled modes. It is possible to skillfully 
combine the commonly used phase lead/lag function with the 3rd order LPF. How to design the 
3rd order LPF is a main point of this paper 
The phase lead/lag function can possibly provide enough damping performance to the rigid and 

first bending modes. It can be done by placing these critical speeds in the phase lead domain. 
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The proposed design method features the addition of the 2nd order LPF within this 3rd order 
LPF. The center frequency of the 2nd order LPF coincides with the eigen frequency of the rotor 
restricted by pin-pin boundary at AMB portions. This eigen frequency is equal to the anti- . 
resonance frequency located between the 1st and 2nd bending modes. Since the total function of 
the control function becomes a 3rd order LPF, the phase lag forwards to -270 degrees, i.e., 90 
degree phase lead, in the high frequency domain. Therefore, all the higher natural frequencies 
beyond the 2nd bending mode are essentially stable, i.e., completely free from the spillover 
problem. 

This idea is theoretically explained for a rotor system with one AMB support. The 
effectiveness of this design method is proven by numerical simulations and experimental results. 
The rotation test is done with a low enough Q-value to pass the rigid and first bending critical 
speed without the high frequency instability. The generalization of this design concept is .finally 
proposed for the rotor borne by two AMBs. 

A FLEXIBLE ROTOR WITH ONE ACTIVE MAGNETIC BEARING 

A flexible rotor shown in Fig.l is selected for explaining the fundamental idea of the design 
method of AMB compensator. The rotor is supported by a ball bearing at the right end and by an 
AMB at the other. The ball bearing placed here is represented by the pin boundary condition to 
explain the idea clearly. The problem then focuses on to how to design the compensator deriving 
the AMB at the left side. 
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Fig.l Experimental Test Rig 

A gap sensor placed at the left side detects the rotor radial displacement which feeds its signal to 
the controller. The signal from the controller derives the magnetic bearing force through the 
power amplifier having a transfer function of unity. The rotor is connected to a motor with a 
flexible coupling. The flexible coupling is flexible enough to satisfy the free boundary condition 
at the right end of the rotor as shown Fig.2(a). Gyroscopic effects are neglected here. 

The displacement vector is noted by X=[X^ t, X2]: X2 for the rotor displacement at the AMB 

portion and X ̂  for the displacements of all portions of the rotor except the AMB portion. The 

former is called the boundary displacement and the latter called the inner displacement vector. In 
the AMB servo-control system, the boundary displacement X2 is measured and the AMB force U 

acts upon the rotor according to a control law. Then, the equation of motion of the rotor-bearing 
system can be written in matrix form as follows: 

Mi 

X2 J 
+ 

Ki1 K12 

K12 K22 

— 0 
u (1) 

- X2 - 1 
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where Mj and Kjj (i,j=l,2) indicate mass and stiffness matrices of the rotor system, respectively, 

noted by 1 for the inner portion and by 2 for the boundary AMB portion. 
Any damping factors, e.g., shaft material damping, mechanical dampers, are neglected. In the 

authors' opinion, the consideration of such system damping factors, in addition, will potentially 
destroy the realization of practical robust control. Rotordynamics designers want to consider the 
compensator design for the AMB similarly the design for oil-film bearings, i.e., neglecting any 
system damping. 
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The equation of motion (1) of the rotor is formulated in FEM matrix forms on meshing by the 
shaft beam element. The quasi-modal system reduction in a category of the modal synthesis is 
applied to the original system. The quasi-modal transformation modes are determined by two 
kinds of modes as shown in Fig.2(b): 

(1) Pure bending mode 0 obtained by eigen mode of the rotor if the pin condition is imposed 
at the AMB portion. 

(2) Rigid mode 6 obtained by deflection mode if the rotor is lifted to give the unit displacement 
at the AMB portion. 

The quasi-modal transformation is defined by the following equation 

X = 
6 ' s 

0 1 . x2 . 
(2) 

where the variable s is a weighting value indicating the magnitude of the pure bending mode 
obtained in the rotor bending critical speed mode. 

From the result of the transformation, the following equation of motion of the reduced model 
having 2 degrees of freedom is completed: [2,4 

in nic 

L X2 J 
+ 

0 

s 0 

- X2 „ . 1 . 
u, (3) 

where nf=^% <*$, mc^M,^ , m^Mi+tS % 6 , F^co? 2 and 
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co? = the natural frequency of the pure bending mode under the pin 

bounadry condition at the AMB portion. 

This equation of motion having the mass interaction between the pure bending mode and the rigid 
mode is equivalently converted to the spring interaction. This conversion is possible to provide 
the reduced vibrating model visually composing the mass-spring connection, if a new absolute 

displacement z* is introduced as s = a(x^* - X2): 

a = i i i c . / i n * = < z & < z S 

+ 
in..,5 . . x2 . sym. 

-k.. " 0 " 

. x2 . . 1 . 
u. 

(4) 

(5) 

where in«,=a2[Qx, m,,5=05-0.,, k , ,^ , ,^? 2 and a=nic/in"t=(z5tMi dJ/^'Mt <z5 

The obtained model is illustrated in Fig.2(c). The masses of meq and meq<5 indicate the 
equivalent masses of the rigid mode and the pure bending mode, respectively. 

CONVENTIONAL DESIGN CONCEPT FOR COMPENSATOR [1,3] 

The negative spring effect exhibited by the AMB is neglected. It can be easily compensated by 
certain gain of the proportional action. The equation of motion (5) of the model is rewritten by 
the state equation form as follows: 

X=AX+bu 

y=cX 

where 
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The controller design based upon the modern control theory combining the full order observer 
and the optimum feedback gain due to LQR is applied to the model in the manner as shown in 
Fig.3. One example of the transfer function of the compensator itself is obtained as shown in 
-Fig.4. The overall configuration of the transfer function is fundamentally similar to PID action, 
but down slope gain of 1st order LPF 
at the high frequency domain. 
Therefore, damping ratio of the 
rigid and first bending mode of 
the global system can be well 
provided. However, higher 
bending modes than the 2nd will 
be easily unstable due to the 
phase lag at this high frequency 
domain. 

In fact, the phase curve on the 
Bode diagram changes from the 
phase lead region to the phase lag 
region beyond the peak portion 
of the gain curve. This phase lag 
forwarding to -90 degrees 
provides a negative damping 
effect for high frequency eigen 
modes of the global system. 
This is the reason why the 
spillover instability is induced. 
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Fig.4 Controller Transfer Function (Conventional Design) 

PROPOSED DESIGN CONCEPT FOR COMPENSATOR 

The idea of the new design comes from the fact that if this phase lag forwards to -270 degrees 
instead of -90 degrees, the compensator can provide the positive damping to the system even in 
the high frequency domain. This idea can be realized by replacing the behavior of the 1st order 
LPF of the conventional compensator by one of the 3rd order LPF. In other words, it is easily 
completed by the cascade combination of the present type plus a 2nd order LPF as shown in 
Fig.5. 

The type of the 2nd order LPF that must be added is now discussed. It is recommended that 
the center frequency of the 2nd order LPF is tuned with the anti-resonance frequency, i.e., the 
eigen frequency of the pure bending mode. This is because the rotor does not react to the 
resonance of the 2nd order LPF in the control network. 

If the LQR method stated in APPENDIX 
is applied to a control objector, composing 
the rotor and this 2nd order LPF, this 
required compensator is automatically 
designed. One of the transfer functions of 
the proposed compensator is shown in Fig. 6 
including the 2nd order LPF. The dotted 
curve indicates the inverse function of rotor 
response against force input, called the rotor 
gain. The peak of the dotted curve indicates Fig.5 Control Layout (Proposed Design) 
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the anti-resonance frequency. 
In this figure, the phase lead covers 

the natural frequency of the rigid and 
first bending modes to provide the well 
damping effects at the critical speeds. 
The phase lag starts beyond 80 Hz, but 
it quickly passes -180 degree before the 
2nd bending mode and it finally moves 
forward to -270 degree. Therefore, 
positive damping is provided to all 
bending modes of the global system 
beyond the 2nd mode, ensuring 
stability. As obviously shown in this 
phase curve, all of the higher frequency 
modes are definitely stable. There is 
no spillover problem. This controller 
will be robust. 

The result of the eigenvalue of the 
global system is shown in Tab.l. 
Clearly all modes are completely 
stabilized even with no material 
damping. 
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Fig.6 Controller Transfer Function(Proposed Design) 

Table 1 Eigen values of the f l e x i b l e rotor 

Mode Orpm eigen value ( £ % , Hz) Mode 
Open loop Closed loop 

Rigid mode 
1st bending mode 
2nd bending mode 
3rd bending mode 
4th bending mode 

0, 0 
0, 47 
0, 175 
0, 285. 
0, 374 

61.65038, 20 
16.24556, 48 
2.82522, 169 
0.05888, 285 
0.00009, 374 

EXPERIMENTAL RESULTS 

A control law is made by digital means with the following specifications: 
- Bilinear s-z transformation used for digitalization, 
- 8 KHz for sampling frequency and 
- DSP board (type ADSP320 made by Chubu Denki) 

In the experiment, the integral action is added for statically levitating the rotor. A proportional 
action is also included in addition, for cancelling the negative spring effect in the AMB. 

For experimentally checking the stability of the developed control law of the 3rd order LPF, it 
is compared with the commonly used PID control law as shown in Fig.7. In the case of the PID 
control, depending on the increase of the feedback loop gain, the instability of the 5th bending 
mode appears when the natural frequency of the rigid mode reaches 13 Hz. However, in the 
case of the 3rd LPF control, even if the rigid mode natural frequency is increased to 24 Hz, the 
bending mode instability does not appear. This proposed controller is thus very robust. 
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As shown in Fig.8, the 
vibration response curves are 
measured. Compared with the 
PID, enough damping effect is 
provided by the proposed 
controller for the rigid and first 
bending modes at the critical 
speeds. Small peak amplitudes 
are obtained compared with the 
conventional type. 

As suggested in Fig.9, test data prove the design concept is as follows: 
- 1st eigen mode (rigid mode) and 2nd eigen mode (1st bending mode) can take enough 

damping ratio to pass the critical speeds owing to the phase lead. Consequently small 
Q-value design is completed. 

- The higher eigen modes than the 3rd (2nd bending mode) are stabilized due to the phase lag 
of about -270 degrees. The spillover problem completely disappears for any higher 
frequency mode. 

- The center frequency of the additional 2nd order LPF must be set with the anti-resonance 
frequency located between the 2nd and 3rd eigen modes (1 and 2nd bending modes). Even if 
the Q-value of the 2nd order LPF is high, the rotor does not react to such sensitivity as high as 
in the compensator network. 

GENERALIZATION OF PROPOSED DESIGN CONCEPT 

The rotor borne by two AMBs at the left and right sides is quite common. The concept of the 
compensator design developed for one AMB type can be enhanced to two AMB types. The 
natural frequency map is shown in Fig.lO. On the left side of the map the natural frequency of 
the rotor subjected to free-free boundary condition is plotted. On the right side the natural 
frequency is that of the pin-pin boundary condition. The right side frequencies indicate anti-
resonance frequencies. 

For the type of two AMB there are two types of controller layouts: centralized and 
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decentralized. The centralized layout employing the translation and tilting mode controls are 
suitable for the control law of the 3rd order.LPF. The separation into both the modes and two 
independent compensators are prepared as shown in Fig.ll. 

According to this separation, two types 
of the compensator are independently 
designed, based on the design concept 
developed for the one AMB control: 

- type 1 : translation mode compensator 
to control mainly the parallel 
rigid mode and the 1st bending 
mode of the rotor. 

- type 2 : tilting mode compensator to 
control mainly the conical rigid 
mode and the 2nd bending 
mode of the rotor. 
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The obtained transfer functions of each compensator are shown in Fig.12 and 13. The center 
frequency of the 2nd order LPF coincides with the 1st anti-resonance frequency of the rotor 
under the pin-pin boundary condition, as shown in the natural frequency map of Fig.lO. 

The stability analysis of the 
global system is shown in Table 
2. All of the bending modes are 
stabilized without spillover 
problems, even i f no material 
damping. Clearly the completed 
regulators are very robust. 

Table 2 Eigen values of the rotor (2 AMBs) 

Mode 
Orpm eigen value Hz) 

Mode 
Open loop Closed loop 

Trans l a t ion mode 
T i l t i n g mode 
1st bending node 
2nd bending mode 
3rd' bending mode 
4th bending mode 

0. 0 
0, 0 
0, 154 
0, 331 
0, 555 
0. 786 

26.66492, 29 
18.48787, 31 
2.93966, 152 
0.00290, 331 
0.00091, 555 
0.00023, 786 
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CONCLUSION 

A design concept for AMB control based on a 3rd order LPF is presented. It is a key point 
that the center frequency of the 2nd order LPF within it must be set by the anti-resonance 
frequency of the rotor. The rotor system can be stabilized by positive damping due to phase 
lead for the rigid and 1st bending modes, and due to phase lag with about -270 degree for the 
higher bending modes. The completed compensator can potentially stabilize all of the bending 
modes with no material or structure of damping. The effectiveness.of this design concept is 
proven in the experiment using the rotor having one AMB. 

This concept is generalized for the rotor borne by two AMBs, as this is a common type, and 
its effectiveness is made clear by simulation. 
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APPENDIX 

If the LQR method based upon the state feedback control is applied to a control objector 
composing of the rotor and 2nd LPF, the required compensator of the 3rd order LPF is 
automatically designed. The corresponding state equation of this enlarged objector as shown in 
Fig,5 is written by following formulas: 

" X " — " A bcp " X " 
+ 

" 0 

--Z j . 0 AP . Z j . bp . 

where 

Z= 

AP = 

y= [ c o ] 

U=CPZ 

X 
L z J 

(7) 

0 1 n " 0 " 
2 * , b- = and CP = 

OJF — 2^FCOF _ ayl _ 

The application of the LQR generates the following type of control law: 

Gc(s)= [ c, 0 ] (s i -
Ap-b,fp -bpf 

bcp A-kc 

" 0 " 
) - l ) - l 

. k . 
(8) 

where is the observer gain vector and [f,fp] the state feedback gain. 

An example of the control law obtained by this manner is shown in Fig.6. 


