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Abstract: This paper presents an H* robust control design for a magnetic suspension system with a flexible

beam. The experimental apparatus utilized in this study is a simplified model of a magnetic bearing with a
flexible rotor. Firstly, we describe the apparatus and formulate the mathematical model. Secondly, we set
up an H* control problem as the mixed sensitivity problem where the augmented plant is constructed with
frequency weighting functions. The iterative computing environment MATLAB is then employed to calculate
the controller. Thirdly, the controller is implemented using a digital signal processor NEC pPD77230 with
12-bit A/D and D/A converters. Finally, some experiments are carried out in order to evaluate the robust-
ness of the H™ design. These experimental results show that the magnetic suspension system is robustly
stable against various parameter changes and uncertainties.

1. Introduction

Magnetic bearings are bearings where the
suspension forces are generated magnetically without
any contact [1]. The structure of a magnetic bearing
is shown schematically in Fig. 1. Several pairs of
electromagnets are arranged radially around a rotor.
By utilizing the magnetical forces of the electromag-
nets, we can support the rotor without any contact.
It should be noted that these forces have to be con-
trolled according to the motion of the rotor, since it is
unstable in nature. Modeling and control of a mag-
netic bearing with its rigid body motion have béen
reported elsewhere (see, e.g., [2] - [8]). In case of high
speed rotation, however, the rotor should be treated
as a flexible one due to the effect of the deflection of
the shaft. Now the control of magnetic bearings with
a flexible rotor becomes more and more an important
issue. In this paper, as a simplified model of an elas-
tic rotor in a magnetic bearing, a magnetic suspen-
sion system with a flexible beam is fully utilized [9].
Further, in order to achieve robust stabilization, we
try to apply the H* control theory.

Recently the state-space formulae for the H™
control has been found (see [10],[11], and the refer-
ences therein). The formulae involve the stabilizing
solutions to two indefinite algebraic Riccati equa-
tions, which have the same form as those arising in
the linear quadratic differential games [11],[12]. A
direct consequence of the above results is that the
associated complexity of computation is fairly
reduced. Further, there has been a substantial
development in the computer aided control systems
design packages, such as Robust-Control Toolbox
with MATLAB [13]. Accordingly, we could readily
practice this powerful control methodology. Note
that, despite voluminous publications on its theory,
there have been few experimental evaluations for the
performance of the H™ controller. Hence an applica-
tion oriented study of the H™ control is also an chal-
lenging issue.

This paper presents an H*™ robust control
design for a magnetic suspension system with a flexi-
ble beam. In Section 2, we describe the experimental
apparatus and formulate the mathematical model. In
the apparatus, we intend to emphasize the first vibra-
tional mode of the flexible beam. Section 3 is devoted
to the control problem setup and the design of a con-
troller. We set up an H™ control problem as the
mixed sensitivity problem where the augmented plant
is constructed with frequency weighting functions.
The iterative computing environment MATLAB is
then employed to calculate the controller. In Section
4, the“controller is implemented using a digital signal
processor NEC pPD77230 with 12-bit A/D and D/A
converters. Several experiments are carried out in
order to evaluate the robustness of the H™ design.
These experimental results show that the magnetic
suspension system is robustly stable against various
parameter changes and uncertainties.
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Fig. 1. Schematic diagram of magnetic bearing.
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Fig. 2. Magnetic suspension system.

Table 1. Parameters.

parameter symbols values units
beam length 21 3.8 m
first order resonance frequency f, 4.5 Hz
deflection of the beam Xg 12.3x107° m
mass m m 5.8 kg
mass M M 10.36 kg
stationary ga.up of the electromagnet X, 5.0x107° m
steady state current of the electromagnet I 0.885 A
resistance of the electromagnet R 57 n
inductance of the electromagnet L 3.16 H

2. System Description and Modeling

2.1. Description of Apparatus

As a simplified model of a magnetic bearing for
a flexible rotor, we consider a magnetic suspension
system with a flexible beam shown in Fig. 2 [9]. The
experimental configuration which is fully utilized
throughout the paper, consists of a flexible aluminum
beam with a electromagnet and a gap sensor. The
beam is supported by a hinge at the left side and it
will be suspended stably by the force of the elec-
tromagnet at the right side. The beam is reasonably
stiff in torsion bending and is free to rotate at the
supporting point O. Thus it can be assumed that the
motion of the beam is confined to the vertical plane.
As in Fig. 2, a mass m is attached at the right side of
the beam and a mass M is attached at the center. It
is noted that m is corresponding to the rotor of the
electromagnet, M is corresponding to the rotor of the
motor, and the beam is corresponding to the shaft
(see Fig. 1). In this configuration, we intend to
emphasize the first vibrational mode of the flexible
beam. An U-shaped electromagnet is located as an
actuator at the right side. As a gap sensor, a stan-
dard induction probe of eddy-current type is placed

at the same position in the right side of the beam.
Parameters of this experimental apparatus are given
in Table 1. The beam weight, including m and A, is
supported by having a steady-state current I (or, a
steady-state voltage FE). Stabilization of the system
can be accomplished by controlling the corresponding
voltage perturbation e.

2.2. Model Formulation

Several approaches can be considered to obtain
its mathematical model; e.g., a purely analytic
approach which results in complex distributed-
parameter systems represented by partial differential
equations, or a finite-element approach with the assis-
tance of computer programs which usually generates
high-order finite-dimensional systems represented by
ordinally differential equations. Among them, the
approach taken here may be the simplest one. In the
following, the beam is described by a simple multi-
mass linear system. Due to the structure of the
apparatus, we will include up to the first vibrational
mode of the beam, as well as the rigid body motion,
in the model. There is no need to say that, if neces-
sary, we can build a more precise mathematical model
using the approach mentioned above.
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We assume that a half of the mass of the beam
can be included into M, and a quarter of it can be
included into m. Under these assumptions, we will
consider the dynamical equations for m and M,
respectively. This naturally leads to a simple
lumped-parameter model of the beam, in which the
effect of the first vibrational mode is taken into
account. Let X; be the steady-state gap between the
electromagnet and the beam at the position of m, X,
be the steady-state deflection of the beam from the
base line at the position of M, I be the coil current in
the steady-state, and E be the corresponding voltage.
Further, let the small perturbations of the above
quantities be z,, z,, ¢, and e, respectively (see Fig. 2).
Then the following equations of motions can be
obtained.

2

d2171 I+'
2 mg—k X ta, +af2(Xy+2,) -2y
+ﬁ;[2(x2+$2)"zl] (1)
d222
M pra Mg—20a[2(Xy+2,) -z

—2p L2 Xt a) -z (2

The second term in the right-hand side of (1)
represents the attractive force of the electromagnet
and k, which will be determined by experimental
data, denotes the corresponding coefficient. Both the
third and the fourth terms in the right-hand side of
1) represent the restoring force generated by the
eflection of the beam. The coefficients o and 8 will
be also determined by experimentally obtained data.
While, both the second and the third terms in the
right-hand side of (2) represent the reaction of the
above stated force.

Although these equations are nonliner, as is well
known, we can easily obtain the linearized equations
for the small perturbations around the steady-state
points. In the steady-state, we have

2

0= mg—k[ — | +2aX;, 0= Mg—4aX, (3)

« 1
=1

From this, the linearized equations are

d*z, M+2m
m = —a|z,+2az
i X, g 1 2
(M+2m)g . dz, dz,
- —p—+2p— 4
T Pty @
d*z, dz,
M 2 20z, — 4a1:2+2ﬁ—— ,B— (5)

For the relationship between the applied vol-
tage e and the coil current 7, the equation can be

di
Ri+L= =
T (©

where R and L denote the resistance and the induc-
tance of the electromagnet, respectively. The values
of R and L have been determined by experiments.

The sensor provides us with the information for
the gap z,. Hence the measurement equation is

Yg = T1- (7)

Now, from experimentally obtained data, we
can determme the following values; %k =
0.0034 Nm?/A%, o = 2064 N/m, and B =
0.327 Ns/m Thus, summing up the results, the state
equations for the magnetic suspension system are

Ty = Agg4+Bug, y, = Cyz, (8)

where zg

= [, 3 %, 2 1], u,:= e and

g°

00 00 10 00 00
00 00 00 1.0 0.0
A~=|7070 712 -0.327 0.654 —41.9 | (9a)
399 —797 0.654 —1.31 0.0
00 00 00 00 —18.0
0.0
> |00
B,=| 0.0
0.0
0.317

Cg=[1 000 o] (9b)

with (A, By) controllable, and ( 4, C;) observ-
able. 'Theé transfer function of this system is

G(s) =

—-13.3-
(s+18.0)(s+84.4)(s—84.1)

(5+0.654—528.2)(5+0.654+528.2) (10)
(5+0.697—528.8)(5+0.697+;28.8) °

For the magnetic suspension system described
above, our principal objective 1is stabilization.
Further, the system should be stabilized robustly
against the followings; i.e., the unmodeled higher
order vibrational dynamics of the beam, the neglected
higher order terms in the Taylor series expansions in
the linearization procedure, the parameter errors in
the beam and in the electromagnet such as %k, a, 3,
m, M, R and L, the effect of the eddy-current in the
electromagnet, and so on. To this end, we will use
the H™ control theory in the next section.
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Fig. 3. Plant augmentation.

3. Controller Design

3.1. Mixed Sensitivity Problem

Consider the system shown in Fig. 3. Let us
focus our attention on the transfer function from w to
e, called the sensitivity function S(s), and the
transfer function from w to y,, called the complemen-
tary sensitivity function T(s). The sensitivity func-
tion S(s) and the complementary sensitivity function
T(s) are defined as

S(s) := (I+L(s))™ (11)
T(s) i= L(s)(FHL(s) ™ = I-5(s)  (12)

where L(.? := G(s)F(s) denotes the loop transfer
function. It is well known that these functions play
an important role in robust feedback control system
design. In the following, o(-) denotes the greatest
singular value of a matrix, and the H™-norm is

defined as
Il B(s) llgg := sup o(®(jw)) (13)

for a proper stable transfer function $(s).

Firstly, it is known that the requirement for dis-
turbance attenuation in the feedback system can be
specified with the sensitivity function S(s) as

a(S(jw)) < | 77 Wil(jw) | forall w.  (14)

In (14), Wy(s) is a desired frequency weighting factor
whose gain is relatively large in a low frequency range
and vy > 0 is an adjusting scalar parameter. It is easy
to see that the disturbance attenuation requirement
(14) can be rewritten as

I yWi(s)S(s) o< 1. (15)

Secondly, let us consider robust stability of the feed-
back system in terms of the complementary sensi-
tivity function T(s). Suppose that the plant G(s) is
perturbed as

G'(s) = (I+A(s)) G(s) (16)
where A(s) denotes multiplicative plant perturba-
tions. e will assume that G gs; has the same

number of unstable modes as G(s), and that the
nominal feedback system is stable. Then, if

F(T(w) < | Wi(io) | forall w (1)

the system remains stable for all A(s) satisfying
a(A(jw)) < | Wa(jw) | forall w.  (18)

Hence, as the robust stability condition, we have
Il Wa(s) T(s) lleo< 1. (19)
The frequency weighting factor W,(s) is usually small

at low frequencies and increases its magnitude at
higher frequencies.

The design specifications as in (15) and (19)
can be combined into a single H*-norm specification

YWi(s)S5(s)
Wa(s) T(s)

‘ <1 (20)
oo
where we have used the following matrix inequality

%F([g])_gmax (5(4),3(B) } s?([ 2 ])- (21)

This ensures that the requirements (15) and (19) are
reasonably approximated (within 3 dB). Now the
mixed sensitivity problem is to find a controller F(s)
such that the system is internally stable and the
specification (20) is satisfied.

3.2. H* Design

In this study, the weighting functions WW,(s)
and W,(s) are chosen as

1.3298
Wy(s) = . (22)
1+4s/(27-0.016)
Wy(s) = 1074 14——x
nv - 27-0.002
x | 14— 1+ (23)
27160 2r-200 |° V7

While the value of 4 will be increased according to
the design iterations until the specification (20) can
be no longer satisfied (7—iteration§)
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Table 2. State-space realization of augmented plant.

{ 0.00 0.00 1.00 0.00 0.00 0.00 ] 0.00 0.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
7.07x10° 7.12x10% —3.27x107' 6.54x107! —4.19x10 0.00 0.00 0.00
A=1 399x10? —7.97x10° 6.54x10~ —1.31 0.00 0.00 » [By Bal =400 0.00
0.00 0.00 0.00 0.00 —1.80x10 0.00 0.00 3.17x107!
[—1.00 0.00 0.00 0.00 0.00 —1.01x107" 1.00 0.00
C 0.00 0.00 0.00 0.00 0.00 2.30 Dy D 0.00 0.00
=| 1.01x107 1.01x10% 7.99x10° 1.38x107° —5.92x107* 0.00], =| 0.00 —8.35x1078
02 D21 D21
—1.00 0.00 0.00 0.00. 0.00 0.00 1.00 0.00

Table 3. State-space realization of controller.

[—2.98x10° —1.40 —3.49 —1.29x10™ 8.27x107? 3.06x10* |
—1.69%x10%* —7.97x107? —2.55x10™ 1.00 4.69x107% 1.73x10°
—2.44x10° 5.94x10> —3.78x10% 5.45x107' —3.49x10  2.57x10°
Ar=1_1.38x10* —8.04x10? —2.08x10 —131 3.95x107'  1.46x10°
3.02x107 5.47x10*  8.25x10*  6.73x10 —3.22x10° —3.56x10°

| 0.00 0.00 0.00 0.00 0.00 —1.01x107?}

T
By= [—4.20><102 —2.39x10 —3.54x10* —2.01x10° 0.00 1.00]

Cy= [9.54x10’ 1.73x10° 2.61x10° 2.12x10* —1.01x10* —1.12x10’]

Recall that the open-loop plant G(s) has three
more poles than zeros. Hence we need at least -60
dB/decade roll-off for the complementary sensitivity,
which is the same as the open-loop plant. As a
result, Wy(s) becomes an improper function as in
(23). But this ensures that the direct feedthrough
matrix Dy, in (24) has full rank (see Table 2) and the
resulting controller is proper. The frequency weight-
ing szs) has been determined so that the closed-
loop system possesses sufficient robust stability
against uncertainties such as the unmodeled higher
order vibrational dynamics. Subject to these con-
straints, we try to minimize the weighted sensitivity
W,(s)S(s) as much as possible using v-iteration.

With the weighting functions 7W1$s) and
Wy(s), let us form an augmented plant as shown in
Fig. 3. A few hand calculations enable us to obtain

the state-space realization of the augmented plant as
follows (see Table 2)

The obtained H* "central" controller [10],[11] is
F(s) = C{sI-A;)7'B;

—5.05x10°(s+1.972)(s+18.0)(s+84.4)
(5-+0.101)(s-+1176—j401)(s+1176+7401) (s+4232)

(s+0.697—j28.8)(s+0.697+28.8)
(5+0.654—j28.2)(s+0.654+728.2)

(25)

(see Table 3). This controller has six state variables,
which is the same as the augmented plant, is stable
and is strictly proper.

The Bode plots of the sensitivity S with
47 'W;?, and the complementary sensitivity T with
W5 are shown in Fig. 4 and Fig. 5, respectively. As
in _Fig. 4 and 5, the sensitivity § approaches to
47 YW, at low frequencies, and the complementary
sensitivity T approaches to W ! at high frequencies.

: = Az+B 9 These are essentially based on the remarkable all-pass
z z+B,w+B,yu (242) property in the H™ theory. Thus the H* theory pro-
vides a direct method for achieving a loop-shaping in
z = Cyz+Dyw+Dyu (24b) the frequency domain. In Fig. 6, the Bode plots of
the loop transfer function are shown. At low frequen-
y = Coz+Dyw+Dyyu (24¢) cies, the loop transfer function has a large gain. An

where we have chosen v = 17.2. It is noted that the
maximal value of 4 for which (20) holds, is 21.0.
These H™ designs have been carried out using the
iterative computing environment MATLAB [13].

increasing phase-lead can be seen in the middle fre-
quency range, which shows the gain margin of 22.5
dB and the phase margin of 26 degrees. The cross-
over frequency is about 9 Hz and the desirable roll-oll
property can be seen at high frequencies.
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Fig. 5. Complementary sensitivity function.
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Fig. 7. Controller.

4. Implementation and Experimental Results

4.1. Implementation of Digital Controller

The obtained continuous-time controller (25) is
discretized via the popular Tustin transform

2 z-1

T z+1

(26)

at the sampling rate of 40 ps. The Bode plots of the
controller are given in Fig. 7. The solid line in the
figure shows the ideal continuous-time controller aid
the broken line shows the discretized controller with
the transformation (26).

The structure of the digital signal processor
(DSP)-based controller is shown in Fig. 8. Real-time
control is accomplished via the processor NEC
uPD77230 on a special board, which can execute one
instruction in 150 ns with 32-bit floating point arith-
metic. The control algorithm is written in the assem-
bly language for the DSP and the software develop-
ment is assisted by the host personal computer NEC
PC9801. The data acquisition boards consist of a
12-bit A/D converter module DATEL ADC-B500
with the maximum conversion speed of 0.8 us and a
12-bit D/A converter DATEL DAC-HK12 with the
maximum conversion speed of 3 us.
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System [ Address wPD77230
Decoder
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DAC-HK12
Fig. 8. DSP-based controller.
4.2. Experimental Results E 20 ' T l
We first evaluate the nominal stability of the g ”
designed control system with time-responses for a g oof—
step-type disturbance. The disturbance is added as 8 4
an applied voltage in the electromagnet, which in fact 3
amounts to about 20 % of the steady-state force. E-z.oﬂ ¢
Fig. 9 shows the displacements of z; and z,. From [ TIME[ s |

this result, we can see that the nominal stabilization .
of the system is achieved. In Fig. 10, the stiffness at (a) Displacement x
the position of the electromagnet is also shown.
From these data, we can see that high stiffness has
been achieved at low frequencies. Further, it should
be noted that the stiffness is not necessarily
deteriorated near the resonance frequencies. This
implies that the system is well stabilized.

Since our concerns are also in robust stability
against various model uncertainties, we further con-
tinue the same experiments with the plant parame- TIME(s]
ters changed. The parameters have changed in the (b) Displacement x,
following ways;

(1) m = 6.95 kg, which amounts to a 20 % increase Fig. 9. Responses for step-type disturbance
for the nominal value of 5.8 kg, ( nominal ).

(i) M = 12.31 kg, which amounts to a 20 %
increase for the nominal value of 10.36 kg,

(i) R = 61.7 2, which amounts to a 10 % increase
for the nominal value of 57.0 Q2.

The results are shown in Fig. 11 - 13. In any case it
can be seen that the beam is still suspended stably by
the controlled magnetical forces. Therefore, these
experimental results confirm us that the designed
magnetic suspension system is robustly stable against
various parameter changes.

[mm]
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--------

|
»
o

DISPLACEMENT]

1000F

T

STIFFNESS[ N/mm |

5. Conclusions 0.0T BN

. 1.0
In this paper, an H> robust control design for a FREQUENCY[Hz]

magnetic suspension system with a flexible beam has

been presented. Several experimental results showed

that the designed magnetic suspension system is

robustly stable against various plant perturbations. . .

For the related experimental stulc;ies otPthe H* con- Fig. 10. Stiffness.

trol, see [14],[15].
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Fig. 11. Responses for step-type disturbance

(m = 6.95 kg ).
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Fig. 12. Responses for step-type disturbance

(M =12.31 kg).
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Fig. 13. Responses for step-type disturbance

(R=617Q).
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