2nd International Symposium on Magnetic Beaing

July 12-14, 1990, Tokyo, Japan

DIGITAL CONTROL SYSTEM FOR MAGNETIC BEARINGS
WITH AUTOMATIC BALANCING

T.Higuchi* , T.Mizuno™™* and M.Tsukamoto

ANk

*Institute of Industrial Science, University of Tokyo,Minato-ku,Tokyo 106,Japan
*xFaculty of Engineering, Saitama University,Shimo-Okubo Urawa 338,Japan
*¥%Asahi Chemical Industry Co.,Ltd.,Fuji-shi,Shizuoka 416,Japan

Abstract

The principles and features of a control system for magnetic bearings with an unbalanced
rotor are discussed. Unbalance of the rotor causes whirling motion of the rotor and
vibratory force acting on bearings. Two special ways to control magnetic bearings with an
unbalanced rotor have been presented. One is compensation for unbalance and the other is
automatic balancing control. When the spinning axis corresponds with the principal axis of
inertia by the automatic balancing control, no reaction force acts on the base of magnetic
bearings. In this paper, control system for automatic balancing using observer for totally
active magnetic bearing is discussed and implemented by a digital control system. The
relationship between the compensation for unbalance and the automatic balancing control is
clarified. The effectiveness of the proposed control system is demonstrated by numerical

simulation and experiments.
1. Introduction

In a rotating machine unbalance of the rotor
causes whirling motion of the rotor and vibratory
force transmitting to the base through bearings.
These problems can be solved by using a totally
active magnetic bearing system, which is able to
control its suspension force dynamically. There
are two methods to solve the problems caused by
unbalance. The first is called compensation for
unbalance. With this method, the rotor precisely
rotates around the geometrical axis. The other is
called an automatic balancing control system in
which the spinning axis corresponds with the
principal axis of inertia. No reaction force acts
on the base of magnetic bearings with this method.

The authors developed a compensator for unbal-
ance using an observer for totally active magnet-
ic bearingsl1]. Habermann et al. developed com-
pensation for unbalance and automatic balancing
control by utilizing coordinate conversion be-
tween fixed coordinate and rotating coordinate
and by filtering tuned with the spinning fre-
quency[21[31[4]. Reinig et al. studied compensa-
tion for unbalance and automatic balancing con-
trol using an observer, but they discussed on
only a simplified model of 2 degrees-of-freedom
magnetic bearing[5]. In this paper, a compensator
for automatic balancing using an observer for
totally active magnetic bearing is developed.

The control systems of compensation for unbal-
ance and automatic balancing are implemented by
digital controller. The nonlinear characteristics
of electromagnet is compensated for linearity.
The relationship between compensation for unbal-
ance and automatic balancing control is discussed
from the standpoint of the observability. The
effectiveness of the proposed control system is

demonstrated by numerical simulation and experi-
ments.

2. Modeling
2-1. Structure of magnetic bearings[6]

Fig.1 shows a totally active DC-type magnetic
bearing system. It consists of an axial magnetic
bearing, two radial magnetic bearings, a motor-
stator and a rotor. The axial bearing has a pair
of electromagnets and each radial magnetic bear-
ing has two pairs of electromagnets. To describe
dynamics of a magnetic bearing system, we define
coord\i‘nate axes and forces acting on the rotor as
shown in Fig.2; in the equilibrium the center of
mass of the rotor G is at the coordinate origin 0O
and the axis of the rotor corresponds with
z-axis. In this paper, we assume that the rotor is
a rigid body and that the rotor spins at a con-
stant angular velocity.
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Fig.l Basic structure of a totally active
magnetic bearing system
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Fig.2 Coordinates and forces acting on the rotor
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In designing a control system, it is usually as-
sumed that the system to be controlied has linear
characteristics. However, electromagnets used for
magnetic bearings have nonlinear characteristics
as follows:

Fn=Qn-In2/Dn2, n=l,...,10, )

Fa: the attractive force of electromagnet n,

Qn: the coefficient of electromagnet 1,

In: the coil current,

Dn: the gap between the magnet pole faces and

the reaction surface.

In conventional method characteristics of
electromagnets are linearized by adding bias cur-
rent into the coil current. The force of a pair of
electromagnets can be given by

FP_Fm'_'QP . IPZ/DPZ-Qm M Imz/sz
=Q- (JIo+1)?/(Do-d)*-Q" (Io-1)2/(Dot+d)?
=4Q- 1o/Do® - 1+4Q" 102/Do®-d 2)
where,
Q=QP=Qrm IP=IO+it Im=10"io DP=DO_d7 Dm=DO+d‘
Do,d: stationary and incremental component of Da,
Iot bias current, i:feedback current,
(p,m)=(1,3),(2,4).(5.7),(6.8),(9,10)
+the numbers of a pair of electromagnets.
To linearize sufficiently, the bias current must
be adequately larger than the feedback current.
we introduce a direct linearization methodi7] whi-
ch linearize the characteristics of electromagnet
by the following nonlinear compensation:

F203 Ip=DpV F/Q , Im=0 (3a)

F<0; 1.=0 s Im=Dm vV -F/Q (3b)

F: the force acting on the rotor by a pair of

electromagnets given by the feedback

This method renders the bias current unneces-
sary. Therefore, heat generation and consumption
of electric power of electromagnet are minimized.
The eddy current in the rotor caused by the high
speed spinning becomes sufficiently small and sO
the heat generation of the rotor and rotation
loss are also minimized.

2-3. State ations
The state equations of the magnetic bearings

with the direct linearization method are devel-
oped as the following procedures. The dynamics of
the rotor is described as inertial system with the
gyroscopic effect. The whole system can be di-
vided to subsystems related to transiation and
rotation.
The subsystem of translaticn along x-axis and

y-axis is described as

%Xt=AtCXt+Btcut 4
Xo = [XgrVao YUyl T ULT [FxFy] T
At.°= 0 1 0 0 ’ Btc'-'- 0 0

o0 0 O ‘bt 0

o 0 0 1 ‘.0 0

o 0 0 O 0 be

The subsystem of rotation around x-axis and y-
axis is described as
'Q'Xr=ArOXr+Bchr 5)

dt
Xr = [exowxyevowv] T, u-= Mx » My] T

Aro= 0 i 0 0 » Brc= 0 0
g0 0 0 -ax b: 0
o 0 0 1 0 O
0 ax 0 O 0 b:
The subsystem of translation along z-axis is de-
scribed as
d_ _x e o
EEX;-Az Xz+Bz Uz (6)

Xg = [zavzl T » Uz=F=

) R

where,
XayYarZat displacement of center of mass G,

VixyVy Vzt velocity of center of mass G,
0 x, 0 ¢ tilting angle of the rotor axis,
W, Wyt derivative of @xand 0y
=+ angular yelocity of spinning,
Fx,Fy,Fz: force of electromagnet acting
on the rotor,
Maxc,My: moment of electromagnet acting
on the rotor,
ak = 12/l W2y .
by = 1/m, br = 1/1c bz = 1/m,
m: mass of the rotor,
1,1 POlar and transverse mass moments of
inertia of the rotor.
The forces Fx,Fy,Fz and the moments Mx,My are
given by
Fx=(F1-F3)+(F5-F7),Mx=‘(F2'F4)11*(F5‘F5)12, (7a)
y=(F2-F4)+(Fe-Fs)‘My= (Fl’Fa)ll"(Fs"Fﬂlz, (7b)
Fz=Fo-F10, (7¢)




where,

11,12 distance between the center of mass G
and the magnets of radial bearing A and B
as shown in Fig.1.

3. Control system with automatic balancing
3-1. Model with unbalance

When the rotor is unbalanced, that is, the geo-
metrical axis of the rotor is different from the
principal axis of inertia, the rotor spins with
whirling motion. Unbalance of the rotor can be
divided to static unbalance and dynamic unbal-
ance. The static unbalance affects only the sub-
system related to translation along x and y axes.
The dynamic unbalance affects only the subsystem
related to rotation. If the parameter ax equals to
zero in the subsystem related rotation, it has the
same form in the state equations as the subsystem
related to translation along x and y axes. There
is no influence of unbalance on the subsystem
related to transiation along z-axis. It is allowed
to discuss only the subsystem related to rotation
without 1oosing generality.

To construct a digital control system, we dis-
cretize the system (A:°,B:-°) using a zero-order
holder and let (A,B) denote the obtained digital
system. State variable xr and input u:r are repre-
sented by x and u, respectively, in shortening.
The digital system is written as foliows:

X(K+1)=Ax(K)+Bu(k) . (8)

Because of unbalance, disturbance force'seems
to act on the rotor. It is represented by the
following free system:

‘%Wu=AGCWu s Wu= [Max,May] T, (9)

where,
Max,May: moment caused by unbalance,
Ag C= [0 Wz ]

lw= 0

To construct a digital control system, we discre-
tize the free system Aa° using a zero-order hold-
er and let Aa denote the obtained digital free
system. EXpansion system including disturbance
can be written as follows:

xcu(k"‘l)=AuXQu(k)+BuUu(k) s (10a)
YulK)=CuXeulk) , (10b)
XeulK)= [Xu(k)] , Au= [A B ] ’
wu(k) 0 Aa
Bu=[B] » Ca=[CO] ,C=[1000],
0 6010
where,

Xu: state variable based on
the geometrical axis of the rotor,
Yu' output generated from sensor signals.
This augmented system can be represented by

another form. Instead of looking upon unbalance
as disturbance force, we can think of unbalance
as observatory disturbance. That is, the sensors
should indicate the tilting angle of the principal
axis of inertia. But because of unbalance, sensor
outputs include geometrical errors; the differ-
ence between the geometrical axis of the rotor
and the principal axis of inertia. The geometrical
errors can be also represented by the following

free system: Note that it is the same form as
eq.(9).

iWzs.=Ad‘=Wa y Wa= [de, edv] T ’ (11a)

dt
where,
0 ax, 0 ay: difference between the geometrical
axis of the rotor and the principal
axis of inertia.
An expansion system including geometrical er-
rors can be written as follows:
Xealk+1)=AaXea(K)+Baua(k) ,

YalK)=CaXealk) ,
Aa= [A 0 ] s
0 Aa
C=

XealK)= [Xa(k)]
Ba= [B] , Ca=[CI] ,

(12a)
(12b)

Wa(k)
ftoooj ,
0 [0 01 OJ
where,
Xa: state variable based on
the principal axis of inertia,
Ya: output generated from sensor signals.

3-2. Structure of controller
The authors developed compensation for unbal-
ance using an observerlll. In this method, a sys-
tem to be controlled is represented by eq.(10).
The disturbance force is estimated by a minimal
order observer and cancelled by bearing force
according to the estimation. In this paper we pro-
pPose an automatic balancing system using an ob-
server for totally active magnetic bearings. In
this method, the system to be controlled is repre-
sented by eq.(12) and the state variables repre-
sent the motion of the principal axis of inertia.
By constructing feedback system utilizing these
state variables, the rotor spins around the prin-
cipal axis of inertia. Since the state variables
cannot be measured directly, they are estimated
by an observer. In this paper, we use a full-order
observer. Controllers of compensation for unbal-
ance and automatic balancing are given by foi-
lows; ~ shows estimated value.
compensation for unbalance
?eu(k"’l):(Au-KuCu)’ieu(k)
+Bulu(K)+Kuyu(K) ,
Uu(K)=FuXeu(K) ,

(13a)

(13b)




Roulk)= [Sc‘u(k)] , Ku= [Kux] ,
] Kuw

Fu= [F 'I] )

automatic balancing control

Roalk+1)=(Aa-KaCa)Xealk) (14a)
+Baua(K)+Kayalk) »
Ua(K)=FaXealK) » (14b)

Roalk)= [SZ,(k)] , Ka= [Kax] ,
Wa(k) Kaw

where,

Ku,Ka: gain matrices of observer

F: feedback matrix of regulator

In these forms, we can hardly understand the
structure of the whole system. We rewrite the wh-
ole system using estimating errors:

5 u=/)Eu"'Xu y 7 u=ﬁu_Wu

E a=/)2a‘Xa ) 77 a=ﬁa-Wa . (15)
Then, we get the following equations:

compensation for unbalance

Xu(k+1) A+BF BF "B O -Xu(k)
£ u(k+) | = 0 AKuxC B O £ w(K)
7 u(K+1) 0 -KuwC Aa O 7 w(K)
Wulk+1l) 0 0 0 Aal LwuX
[ Xu(K)
vak=[ C O 0 0 1 [|&uK
7 w(K)
wulK)
, XulK)
u=[ F F -1 -1] [$uK
7 uw(K)
wu(K)
(16)
automatic balancing control
Xa(K+1) A+BF BF 0 0 Xa(k) ]
sa(k+1) = OA—KuxC 'Kax 0 s:(k)
ﬂa(k"‘l) 0 ‘Kawc Ad"Kaw 0 ﬂa(k)
wal(k+1) 0 0 0 Aa Wa(k)
-Xa(k)]
vakb=[ C O 0 1] |£a(K)
7 a(kK)
\.wa(k).
[Xa(K) W
k=L F F 0] 0] [£aK)
. ﬂu(k)
| wa(k)J

an

Let us consider these systems in the standpoint

of the observability. Generally, an unobservable
system can be written as eq.(18):

[Xl(k+l)] = [Au. 0 ]'[Xl(k)] s (18a)
Xz(k+1) Az1 Azz X=(K)

yx)=[C. O 1 [xl(k)] (18b)

x=z(K)

In the case of eq.(18), state variable xz cannot be
observed from output Y and Azz is the unobser-
vable subsystem. Comparing eq.(16) and eq.(18), Aa
is an unobservable subsystem from output Yu in
the system of compensation for unbalance. There-
fore, the unbalance gives no influence to output
Yu. On the other hand, Aas is an unobservable sub-
system from input Ua in the automatic balancing
system described by eq.(17). With the automatic
balancing control, the state variables are based
on the principal axis of inertia and no influence
can be transferred to input ua. Therefore, the
rotor rotates around the principal axis of iner-
tia. The compensation for unbalance and the auto-
matic balancing control are opposing each other.
The controllers of those methods also have
opposing structures; the system of the compen-
sation for unbalance is unobservable from output
and the automatic palancing system is unobser-
vable from input.

In these systems the poles of regulator and
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Fig4 Structure of the experimental setup

Table 1 Parameters of the experimental setup

m 0.998 [kgl

Ir 4.26 X 1072 | [kg-m®]

la 1.01 X 107% | [kg-m®]

1y 42 [mm]

1o 88 [mm]
Q" Qg 2.5 [N-mm3/AZ]
D0, " D0g 0.3 [mm]

those of observer can be assigned independently.
The poles of regulator are assigned by utilizing
the linear quadratic optical control theory. The
poles of observer are assigned by applying the
same theory for its dual system.

4. Simulation and Experiments

The effectiveness of the proposed control sys-
tem is verified by numerical simulation and ex-
periments. To compare the two control methods, we
also examine compensation for unbalance.

Fig.3 shows a calculation result. Displacement
of the geometrical axis converges to zero by
compensation for unbalance and the forces acting
on the rotor converges to zero by automatic
balancing controcl as expected.

Fig.4 shows the section view of the experi-
mental setup. Table 1 explains its parameters. The
control system is implemented by digital con-
troller using a digital signal processor[8]l. It
carries out the above control law and lineari-
zation within 0.2 msec.

Fig.5 shows some experimental results. In
Fig.5(a) there is a whirling motion in response of
a regulator system which is designed as if .there
were no unbalance. Fig.5(b) shows a result of the
compensation for unbalance. The whirling motion
are controlled fairly well. In the response of
regulator as shown in Fig.5(a), there is an oscil-
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Fig.5 Experimental results

lating magnet-current synchronizing with spin-
ning of the rotor. Fig.5(c) shows a result of
automatic balancing. The magnet-current which
has the frequency component of the spinning is
eliminated in spite of the whirling motion. There-
fore, the rotor must be rotated around the prin-
ciral axis of inertia. Essentially, we have to ob-
serve attractive force of magnet. In the case of
Fig.5, however, we can substitute magnet-current

into attractive force of magnet, because the

whirling motion is adequately smaller than the
gaps between poles of magnets and the rotor.

5. Conclusion

The control system for automatic balancing us-
ing an observer for totally active magnetic bear-
ings was developed.

The relationship between the compensation for




unbalance and the automatic balancing control
was discussed from the standpoint of the observa-
bility.

The control system for automatic balancing was
implemented by a digital controller. The effec-
tiveness of proposed control system was verified
by numerical simulation and experiments.
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