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Abstract

An important requirement in most practical AMB (active magnetic bearing) applications is: “Stiffness
of the controlled mechanical parts, subjected to unknown dynamic disturbance forces or loads, should
not be below a given value for all relevant frequencies.” This requirement can be viewed as a wide—
band disturbance attenuation problem in an H* setting. This approach is particularly well-suited for
applications where the “worst case” exciting frequency of disturbance forces must be considered.

The present contribution deals with trade-offs involved in the frequency domain. As in all control
synthesis problems there are several conflicting requirements. A sample AMB problem is shown where
the achievable performance, i.e. the worst—case compliance of the mechanical parts, is calculated numeri-
cally. Two basic ways of how compromises can be made and how several conflicting requirements can be

incorporated in the H*™ framework are considered.

1 Industrial Background

Electromagnetically supported milling spindles are
examples for AMB application where stiff and precise
suspension is indispensable [5]3. The milling process
induces wide—band cutting forces which may cause in-
tolerable vibrations of the milling tool. The controller
should provide a satisfactory “attenuation” of these
vibrations. !

2 A Sample AMB Problem

Consider the controlled mechanical system in figure
1 which stands for a simple electromagnetically sup-
ported elastic shaft. The system is assumed to be
subjected to an unknown disturbance force w(t) act-
ing on the bottom mass m;. Let 2(t) denote the
displacement of m; caused by w(t), and let 7(s) be
the frequency—domain compliance of the bottom mass
my: z(s) = Ti(s) w(s).

For the time being, let the objectives of the con-
troller C' consist in stabilizing plant P and in main-
taining dynamic compliance Ti(s) uniformly low:
|71 (iw)] < «, over all frequencies w. The main goal
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3 Session 7 of this conference is also concerned with machine
tool spindles.
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Figure 1: A sample AMB problem

of this paper is to seek such controllers and to gain
an understanding of what happens if « is low.

The equations of motion are given by the following
linear second order system:

my = c(z—y) + u (1)
meZ = c¢(ly—2) +w
Remark 2.1 Tor the sake of simplicity we do not

consider the “negative stiffness” of the AMB, and we
fix the parameter values to unity: m; = my =c=1.
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Figure 2 shows the interconnections between plant P
and controller C'.

plant
-~  P(s)

controller
C(s)

IMigure 2: Interconnections

The corresponding algebraic equations in the
Laplace-domain are:

0] = [y w1 1w
u(s) = C(s)y(s)

The Laplace transformation of (1) gives:

s2+1 1
s2(s242) s2(s242
P(s) = ( ) ( ) @)
1 s241
s2(s24+2) s2(s2+2)

It is a well-known fact that all closed-loop functions,
of course including compliance T7, can be expressed
by linear fractional maps of controller C':

Ti(s) = Pi1 + P1aC (1 — PpC)™' Py

e Fp(C(s)) (linear—fractional map)

_ C(s) — (52 +1)
- (s2 +1)C(s) — 52(52 +2) (4)

Definition 2.2 Let || T ||oo denote the “worst
case” compliance defined by its peak value in the fre-
quency response:

def .
IT oo = sup |T(iw)]
0<w< oo

Design engineers do appreciate || - || —norms, be-
cause they are handy and easy to measure. Now let
us formulate the central problem of this paper:

Problem 2.3 Find stabilizing controllers C, such
that the worst case compliance of the bottom mass m;

is “better” than «, ie. || T} |loo < @, where @ >0 isa
given user-specific value. What happens if o is low?
Does an “optimal” controller C' exist?

The first step towards the solution of problem 2.3
is to get an understanding of what a stabilizing con-
troller actually is. The next section will clarify this
point.

3 Closed—Loop Stability
implies Interpolation
Conditions on T

Let us start with an introductory question. Is the
following procedure a legitimate way to obtain stabi-
lizing controllers: “Choose an arbitrary stable compli-
ance Ti(s) and compute C(s) using equation (4)”?
We shall see that the answer is no! This section will
provide mandatory constraints? on Tj.

Recall the basic definition of internal closed-loop sta-
bility:

Definition 3.1 First let us introduce two ad-
ditional inputs vy,vs and outputs u,y according' to
figure 3. The closed-loop [P, C] is termed internally
stable [2] iff the augmented closed-loop transfer ma-
trix H(P,C) defined in equation (5) exists and be-
longs to HSY 5; see next definition.

Definition 3.2 The Hardy space H* , or H, .
more precisely, consists of all complex functions of
s (scalar—valued, vector—valued or matrix—valued ac-
cording to m,n), which are analytic and bounded in
{Ne(s) > 0}. For the subset of rational functions aris-
ing from lumped systems an equivalent definition is:
every entry H,;(s) must be proper (H;;(0co) is finite)
and stable (no poles in {Re(s) > 0}).

Definition 3.3 Let S(P) denote the set of all
linear controllers C(s) which stabilize P.

Iere is the (3 x 3) transfer matrix H(P,C):

z Hy, Hys His w _
u = H21 ffzz H23 V1 (5)
Yy Hs1 Hizy Has V2

Using the one—to—one correspondence between con-
troller C' and compliance T} in equation (4), we com-
pute H as a function of T;:

4 An alternative approach [2] is coprime factorization of Py .
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Figure 3: Diagram for stability definition

Ty
Leegho| s2(s2 42T — (s°+1)
(32 + 1)T1 -1
(82 + 1)T1 -1
2. col

S | S+ ((SP+ )T - 1)
(2+ 1) ((s2+ )Ty — 1)

s2(s24+2)Ty — (s?+1)
S P+ (DT — (2 + 1)
$2(s2+2) ((s*+1)Ty — 1)

In fact, H is an affine function of T;: !
Hij(s) = pij(s) Ta(s) + 4ij(s) (6)

where p;;j(s) and g¢;;(s) are given polynomials in s.
Therefore, H and T share the same poles, except
possibly for s = co. A necessary condition for internal
stability is 77 € H*, but of course this is insufficient
to meet the boundedness of H(c0). Expand T; €
‘H*> as Laurent series around infinity:

a_i a_o a_s
Ti(s)=a — =+ —+... 7
1(s) ot—+-t+t3+ (7)
Insert (7) into (6) in order to get the asymptotic Lau-
rent expansions of H;;(s). Obviously, all positive
powers in s have to vanish, which leads to the fol-
lowing conditions for the coefficients ag...a_7:

ao = 0, a_; = 0
a_s = 1, a_3 = 0
a_qg = -1, a_s = 0 (8)
a_g = 2, a_; = 0

The coeflicients a_g,a_o,...
controller C'.

freely depend on the

Statement 3.4 The closed loop [P,C] is
internally stable off compliance Ty(s) is stable and
meets the interpolation conditions (8). We will call
Ty 1o be admissible iff these two conditions are met.
Section 8 established the following equivalence re-
lation: C stabilizing <= H(P,C) € H 53 <+—
T, admissible

4 The “forbidden”
controller C)

Set T1(s) = 0 which wiolates the interpolation condi-
tions (8)! Equation (4) gives:
Co(s)=s2+1 ¢ S(P)

Figure 4 helps to clarily the behaviour of Cy. Of

behaviour of —C
controller C 0
s
plant
displacement P
7
o
g d t disturbance
WR force W(1)

Figure 4: Behaviour of controller Cy

course, Cp is neither stabilizing nor is it imple-
mentable (differentiators do not exist physically). Let

us take a look at the corresponding closed-loop ma-
trix Hy := H(P,C)):

0 -1
Hy(s) = | —s?2-1 —342— 2s?
-1 —s“—1
—s2—-1
—s2(S2+1)(s*+2) | € Hs
—st—92s2

Most of the [Hyl;; are unbounded for s — oo:
high frequency sensor (actuator) noise causes actua-
tor (sensor) saturation. So, most of the functions Hj;
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conflict with a low compliance || T} ||oc. Note the
practical meaning of each of the H;;: we already in-
troduced Hy; = Ty which is the local compliance of
the bottom mass m;. Ty := H3zy denotes the local
compliance of the top mass ma.

The following statement 4.1 will fully make sense to
the reader at the latest when he has finished reading
this paper!

Statement 4.1

o There are stabilizing controllers C; which permit
an arbitrary low worst case compliance || Tt ||
of the bottom mass m;.

e There are also stabilizing controllers C~’j which
permit an arbilrary low worst case compliance
|| T2 ||oo of the top mass my.

e However, controllers which permit both at the
same time do not exist.

In fact, the optimization problem “min || 7' ||oo”
turned out to be a degenerate .boundary interpolation
problem at s = co (see [1], [4]), because it lacks any
controller bandwidth limitation. In order to take this
essential aspect into consideration we now present two
approaches.

5 First approach

The first approach is somehow indirect: we must pre-
vent the closed-loop poles from “migrating too far
to the left”. This can be achieved by reducing the
allowed pole region to a disk by means of a bilinear
map, see figure 5. Parameter 3 governs the size of this
disk. As B approaches 1, the disk grows to cover the
whole left half plane {Je(s) < 0}. So, the modified
version of problem 2.3 is:

Problem 5.1 Define the disk Dg:=
{ls+(1-=p8)"1 < (1—p)"'}. A compliance func-
tion Ti(s) will be called B-admissible, if all of its
poles are located in Dg and if it meets the interpola-
tion conditions (8). Now, find a compliance function
Tp which solves the following Min-Max problem:

inf su Ty ()|
T: PB-admissible {s e g’DpI 1( )}

The optimal value® is denoted by &(8).

_ 1+z

B-z
I
_ boundary . .
B interpolation ‘““?‘lt"’laﬁ“[;“
point § = oo, pomt z=1p.

" Figure 5: Bilinear map

Ilere is a brief outline of the standard “machinery”
[2]¢ we used to compute the solution of problem 5.1:

e Transform the interpolation conditions (8) in the
z-plane. The new interpolation point is z, = 3.
The function values up to the seventh derivative
are prescribed at z,.

e Set up the “model matching” problem inf || To—
QT |lo.  The Blaschke product (z—pg)%/
(1 - zB)® is a good choice for T} .

e Set up the “Nehari” problem inf || R — X || -

e Solve the Nehari problem (by solving Lyapunov
equations and eigenvalue problems).

e Backsubstitute and use the reverse bilinear map.
Finally use (4) to obtain the corresponding con-
troller Cjp.

Example 5.2 Choose 8 = 0.6. Thus the
closed-loop pole locations are restricted to the disk
{|s+2.5] < 2.5}. Tor this value of # we obtained
the following numerical solution:

Il Tp=o0.6(s) lloo = &(0.6) ~ 1.727
The resulting controller Cv'p:oﬁ is:

N —2.55798s% + 0.7724s% — 4.68039s — 2.14526
0.001s3 + 0.01979s2 — 2.38978s + 1.55966

Note that compliance |T5-0.6(s)| is constant on the
circle {|s +2.5| = 2.5}.

5 Note that by the maximum modulus theorem || T [|oo < &.
In fact, the right hand side equals the left due to the “all pass”
property of solution T‘p .

6 Recently, a new state space approach appeared in litera-
ture, see [Doyle, Glover, Khargonekar, Francis, IEEE 8, 1989].
This new method avoids the cambersome backsubstitution.
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Remark 5.3 Note that the order of C' is n—1 =
3. This is a well-known result in H* control theory.

Figure 6 shows the set of solutions as 3 varies. We see
that the optimum value of the worst—case compliance
decreases to zero as § — 1; at thev same time the gain
of the corresponding controllers Cjs keeps increasing.
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<
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2
1
v — 02 04 06 08

Beta

Figure 6: Numerical evaluation of &(f3)

6 Second approach

One disadvantage of the first approach is: paran}éter
B of the bilinear map offers only insufficient controi
of the “size” of the functions Hj;;(s) conflicting with
a low compliance || T} ||c . An interesting step to-
wards a remedy would be a quantitative version of
statement 4.1, namely: we already know that no con-
troller C exists which permits arbitrary low values of
both || Ty ||eo and || T2 ||oo - But what about minimiz-
ing one of those while keeping the other one under a
given tolerable bound p? For the sake of simplicity
we now don’t care about sensor noise and actuator
saturation.

Problem 6.1 Find a stabilizing controller
C, which minimizes || T} ||c under the constraint
|| T2 |lo < @, where p > 0 is given.

Unfortunately, problem 6.1 is a very intricate one,
and it cannot be solved in this setting. We now give
a solvable problem slightly related to 6.1:

Problem 6.2 Define the dynamic “cross”—
compliances Ty := Hys and T9; := Hs;. Note that
Ti2 = T5; because of the reciprocity of non—gyroscopic
mechanical systems. Define a diagonally g—weighted

compliance matrix W,(s) according to figure 7. Our
optimization problem is”:

[92T1 Tis ]
Tio 07T | ||

=: W,(s)

inf
T, admissible

Recall that the || - ||co—norm for matrix-valued
transfer functions is defined by its maximum singu-
lar value over the iw frequency axis.

w . z
1 generalized plant 1
Wi Z
P w I z |~
—(p)—" [Pu P, ] (P
_ Vi~u | Py Py Y
-O; 2 o r@_ L

L controller L_:l

Cc

Figure 7: Seeking compromises by weighting

A careful analysis [3] of problem 6.2 shows that the
infimum over all admissible T\ ’s is not achieved® but
it is approached by a sequence of admissible 7} ’s. In
order to compute the limit 7} of this sequence which
is not admissible in the sense of statement 3.4 we will
temporarily relax the interpolation conditions. For
the moment let us only insist on the first four condi-
tions on ag...a_3. Then the corresponding “model
matching” problem is easily shown [3] to be:

a = in T. — T, QT
(Q) QE;{??(I” a bQ c
= W,(s)

To € H3Ys, Ty € HY, and T, € HY, are as fol-
lows:

[ee]

02 (s> +2s+2) 1
(s24+s+1)2 (s24s+1)

T.(s) := oy
1 0% (s +1)
(s2+s+1)2 (s2+s+1)

"Recall that T) uniquely determines T, and Tj,.

8 The reason for this is that we did not incorporate Ha3 in
the optimization problem. Note that the order of the polyno-
mial ps3(s) in equation (6) is the highest and comes to 8.
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- ._ 0 ol (s +1)
Te(s) = Tj (s) == [ (s+1)2 (s+1)? ]

We solved this model matching problem by using the

standard technique [2] (reduce it to the “4-block”
problem which can be iteratively solved).

Example 6.3 Choose ¢ = 0.95. We obtained
the following numerical solution:

| Woz0.95(s) llo = &(0.95) ~ 1.7028
| T3 lloo = 1.562, || T3 [|oo ~ 1.537
The corresponding controller CV.'Q:O,QE, is:

—1.5368s3 4 0.6490s2 — 2.5368s — 1.1543
—1.5368s + 0.6490

~

Of course, C has to be “replaced” by a proper stabi-
lizing controller. This can be done either prior to this
stage (e.g. by the method of section 5) or afterwards
(e.g. by “cutting off” @, see [3]). The limitation of
the controller bandwidth further reduces the achiev-
able performance, see section 5.

Figure 8 shows the set of trade-off solutions as the
weighting parameter p varies. Choosing p large im-
plies a low worst—case compliance of mass m; at the
expense of a large worst—case compliance of mass m,.
Choosing ¢ small reverses the situation. Statement
4.1 is thus fully confirmed.

achievable compromises
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Figure 8: ¢ — (|| 11 ||o, || T2 ||loo): Parametric plot
for p sweeping from 0.35...2.

7 Conclusions and Outlook

This paper gives some insight into how modern H*
control theory can be used to treat wide—band stiffness

requirements in AMB applications.

We are convinced that H® approaches are a pow-
erful and extremely versatile tool to determine the
achievable performance in AMB feedback systems,
and to design the corresponding controllers. Of
course, one has to learn how to use this new tool and
how to choose “appropriate” H* design criteria. The
meaning of “appropriate” inherently depends on the
practical application.

Some future problems we want to tackle are ro-
bustness aspects in AMB control and design of posi-
tive real controllers using H* optimality criteria. It
should be intuitively clear that “highly stiff” AMB
controllers have only poor “robustness properties”.
Recall that we identified the “stiffest” controller Cy
with a negative mass and a negative spring. Positive
real controllers are exactly the opposite: they behave
as an interconnection of positive dampers, masses and
springs. We expect this conservatism to improve the
“robustness properties” at the expense of “lower per-
formance”.
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