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Abstract

A self-excited vibration with two different frequencies was observed on our 4-axis-
active type magnetic bearing system which has been developed for high speed rotating
machinery. In this paper, we discuss the cause and mechanism of the self-excited
vibration. Experiments' indicated that the cause of the self-excited vibration is
interaction between nonlinearity of the electromagnet system and flexibility of the
structure. Clarification on the mechanism of this self-excited vibration was made through

analysis with nonlinear model, applying a method wherein both the root-locus method and a
describing function method were used.

1. Introduction Figure 1 shows an example of the self-excited

It is well known that self-excited vibration vibration observed in case of non-rotation. In
in passive axis of magnetic bearing may be caused this wave form, high frequency vibration may be
by increasing of internal damping when the rotor first bending mode of the stator shaft, and low
is driven over critical speed. Shimizu[ll and frequency vibration may be rigid mode of - the
Kawamoto[2] investigated the cause of the self- rotor. Thus, the self-excited vibration is com-
excited vibration, and they obtained the same posed of two vibrations with d?ffergnt
results indicating that the self-excited vibra- frequencies and become continuous vibration
tion is caused by energy loss such as eddy cur- (limit cycle) in case of non-rotation state.

rent loss act as internal damping. On the other
hand, another type self-excited vibration may
occurs even in the active-axis of magnetic 'bear-
ing, ‘if the magnetic bearing system has flexible
structures. Since cause of the self-excited
vibration is not clarified, it is difficult to
obtaining stable high speed rotation in magnetic
bearing system with flexible structures. A self-
excited vibration with two different frequencies
was observed on our 4-axis-active type magnetic Fig.l An example of the self-excited vibration
bearing system which has been developed for high
speed rotating machinery.

In this paper, we discuss the cause and
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mechanism of the self-excited vibration. The 1 hat
experimental results and computer simulations L — 1 %Eator Shaft
proved that the self-excited vibration is caused Rotar | | [refess . .
by interaction between nonlinearity of electro- BeHERHE Dn::r
magnet systems and structural flexibility. The Casing-}- RN e
self-excited vibration mechanism is clarified by “ I éon%olﬁungm
applying the root-locus method and approximate ﬁ ' ﬁ x1: Gy 1s Cxz, Cyz)
dual-input describing function method. R
' Power
2. Characteristics of the self-excited vibration [ Amplifier
To summarize the main characteristics of the
self-excited vibration obtained from experiments, E:;nns“or
we have following:
(1) The self-excited vibration is caused by rela-
tively low-level disturbance, if loop gains ( 1 Displacement
are set at relatively high value. (9x10 971, 9x2. 9va)
2) Even if the loop gains are set at relatively . . . .
¢ )low—level highglgvel disturbance such as Fig.2 Four-axis-active type magnetic bearing
hammering causes the self-excited vibration. system
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3. Magnetic bearing system

A magnetic bearing system, shown in Fig.2,

is consist of 4-axis-active type magnetic bearing
which is located inside of a casing, its compen-
sators and its power amplifiers which generate
control currents. In the following, we give
brief explanations and models of them for analy-
sis.

3.1 Four-axis-active type magnetic bearing

3.1.1 Mechanical structure The mechanical
structure of the 4-axis-active type magnetic
bearing is shown in Fig.3, where the rotor has
hanging bell shape and stator is a cantilever.
The 4-axis-active type magnetic bearing is con-
sist of two radially-active type magnetic bear-
ings which are located on both side of the high
speed motor. The radially-active type magnetic
bearings contain permanent magnets and electro-

magnets. The rotor is passively stabilized in
the axial direction by the restoring attractive
force of the permanent magnets. However, the

magnetic bearing even has imbalance stiffness,
which is expressed as a negative spring constant,
in the radial direction due to the attractive
force of the permanent magnets. The electro-
magnets regulate radial clearance between rotor
and stator and cancel the radial imbalance stiff-
ness. Static characteristics for the rotor are
shown in Table 1.

Rotor

Position
Sensor Upper
Magnetic
_ Bearing
High
Speed
Motor
Lower
Magnetic
Position Bearing
Sensor

Stator shaft

Fig.3 Mechanical structure of the 4-axis-active
type magnetic bearing

3.1.2 Model of the dynamics Since the 4-axis-

active type magnetic bearing is outer-rotor type,
the first-bending-mode frequency of the rotor
could be set at a rather high value, and only the
rigid mode should be considered for the rotor.
However, a first-bending-mode frequency of the
stator shaft, which swings largely at the top
part of the shaft but little at the bottom, is in
the rotational region. Therefore, we adopt the
simplified 2-DOF model shown in Fig.4, where only

Table 1 Static characteristics

Rotor Mass M =51 [ kgl
Rotor Inertia

Spin Axis I, = 15.9%1072 [ kg-m? ]

Radial Axis Is = 31.5X107° [kg-m?]

Ratio Yy = 1,/1¢ = 0.504
Radial Unbalance

Stiffness K.= 12.7X10° [N/m]

Axial Stiffness K,= 2.46X10° [N/m]

M —T Xr Rotor
-Ku
_j Xs )
m Flexible
l Stator Shaft
k c

H: Controller
—Ku : Unbalance Stiffness

Fig.4 Dynamical model

Table 2 Modal coefficients of the stator shaft

Mass m=2712 [ kg ]
Damping Coefficient ¢ = 209 [ Ns/m ]
Stiffness k=221 X 107 [ N/m]
Resonace Frequency W, = 504 [ Hz ]
Damping ratio ¢ = 0.015

the radial motion of the upper side magnetic
bearing is considered. Modal coefficients of the
stator shaft are shown in Table 2.

3.2 Compensators
The independent control method for each
axis, which does not separate the motion into
translational and rotational modes, was adopted
for simplicity of the control system. Every axis
has a same phase compensator, whose transfer
function is as follows.
1+T,s

H(s)= _——1+’I‘.s (T:1>Ta2)

3.3 Electromagnet system
An electromagnet system for the magnetic
bearing, which is composed of a power amplifier
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and electromagnetic coils, has a wide range
bandwidth generally. Therefore, transfer func-
tions for the electromagnet system have as far
been expressed by constant element or first-order
lag element at most. These models are valid when
the 1low frequency vibration problems such as
rigid mode are discussed. However, characteris-
tics of the electromagnet system tend to become
worse in high frequency region. Therefore, non-
linear model for electromagnet system should be
adopted when the system includes flexible mode of
which resonance frequency is several hundreds Hz.

3.3.1 Experimental results Figure 5 shows a
circuit diagram of the power amplifier used in
this system. The power amplifier is push-pull
type and utilize 24 [V] power supply. Figure 6
shows frequency characteristic curves -of the
electromagnet system, when the input voltage was
changed in three steps.
figure that the electromagnet system has nonline-
arity in which phase characteristic becomes worse
in the case where high-frequency, large amplitude
signals are applied.

';—J +24V
| —o

+12v

coltL

>

— 4V

Fig.5 Circuit diagram of the power amplifier
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Fig.6 Frequency characteristic curves of the
electromagnet system (Experiments)

It is obvious from this

3.3.2 Model for electromagnet system Consid-
ering the experimental results of electromagnet

system, we adopted the model shown in Fig.7. The
model consist of a saturation element and 2nd-
order lag element, which are negatively fedback
by constant gain element KF.[SJ Figure 8 shows
frequency characteristic curves for the electro-
magnet system obtained form calculation by using

the model. This figure proves validity of the
model .

+ 1
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Fig.7 Nonlinear model of the electromagnet

system
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Fig.8 Frequency characteristic curves of the
electromagnet system (Simulations)

4. Simulations

Figure 9 shows a block diagram of the whole
system including nonlinear electromagnet system
and a flexible structure. Figure 10(a) shows the
wave forms of the self-excited vibration obtained
from experiments. In this figure, upper side
wave form represents relative displacement be-
tween rotor and stator shaft, and lower side wave

form represents control current. As it is clear
from this figure, both signals do continuous
vibration which are composed of two different

frequency vibrations. Figure 10(b) shows simula-
tion results used the system shown in Fig.9.
Similarly to the experimental results, both sig-
nals of the simulation show continuous vibration
including two different frequency vibrations.
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Fig.9 Block diagram of the system

Because of modeling approximation, the
of the high frequency vibration in simulation
about one third times as small as the experimen-
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Fig.10 The self-excited vibration

5. Analysis for self-excited vibration

is

By using root-locus method and describing
function(DF) method, occurrence mechanism of
self-excited vibration will be discussed.

the

5.1 Root-loci in nonlinear domain

The DF of the saturation element is repre-

sents only by change of gain, which depends on
the amplitude of input signal. Therefore, root-
loci of the system in nonlinear domain can be

calculated by replacing the saturation element by
linear gain element N. Figure 11 shows the root-
loci of a rigid mode and flexible mode. In this
figure, the root-loci by varying the loop gain Kg
are shown by dotted lines and marks show the
operating point in the linear domain. Solid
lines show the change of characteristic roots by
varying the #( =N/K,) at the operating points.
The relationship be%ween % and the stability

the two modes are clarified from this figure as

follows.
(1) Stable region of the rigid mode
0.066¢ % <1 (1)
(2) Stable region of the flexible mode
Y <0.092 , 0.224¢< P <1 2).
Im [rad/s]
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Fig.11 Root-loci of the system
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5.2 Approximate dual-input describing function
(ADIDF) method
In order to obtain the relationship between
amplitude of the input signal and stability of
the system, the value % of saturation element
will be calculated by utilizing DF method. As is
mentioned earlier, this self-excited vibration is

composed of two different frequency oscillations -

so that dual-input describing function(DIDF),
should be calculated. The DIDF method is based
on consideration of two sinusoids as a input,
shown in Eq.(3), being applied to the nonlinear
element.

i= acsin(wt) + besin(Bt) 3)

Since the frequency of the two vibrations sepa-
rate enough( @ =530Hz, B =40Hz), an ADIDF method
could be wutilized in this case. Assume that
change of the low frequency component can be
neglected while one any cycle of the high fre-
quency component, the input signal is considered
as shown in Eq.(4), which is composed of DC-bias
and high-frequency oscillatory component.

i= acsin(wt) + Bp @

Then, output signal from the
can be approximated as

nonlinear element

y= % + a; sin(wt) | (5)

By adopting Fourier analysis to these equations,
next two equivalent gains can be defined.

(1) Equivalent gain for DC component of the input
signal (Equivalent DC gain)

€

Ked=Ao/2BD (G)

(2) Equivalent gain for sinusoidal component of
the input signal

Kea=a1/ ao (7)

These two equivalent gains are not independent
each other but dependent on each amplitude of the
high and low frequency component including of
signal. These gains for saturation element are
obtained as follows.

Ka
Kea = — [@1tdot 2o (cosp>-cos 1)
A BD

a1
+ B (p2-01)] (8)
2Kq -B
Kea = — [ i cos¢q,+ a148p cosp o+
b1 ao ao
1\
+T{2(¢1+¢a)—(sin2¢1+sin2¢2)}] €))
where ¢1=siW*(aVBD) ¢2=snr1(3ﬂﬁ9)
ao , )

5.2.1 ADIDF for low frequency component Boyer
[4] developed ADIDF for low frequency component
of input signal by applying above-mentioned
equivalent DC gain K.4. Average value of output
signal from nonlinear element can be calculated
by product of Bp and K.4. The "representative
output wave" is determined to join the obtained
value by smooth line as shown in Fig.12, By
adopting the Fourier analysis to this wave form
directory, the amplitude of fundamental wave(b)
is obtained. Therefore, ADIDF for high frequency
component is calculated by next equation.

Nr. =b1/bo 10

Figure 13 shows the ADIDF for saturation element
calculated by Boyer's method. If each amplitude
ratio €&r (= bo/al)' €r (= ao/al) of low and high
frequency component in input signal are known,
ADIDF ratio of low frequency component Yr
( =N./K, ) can be obtained from this figure. The
shadowed portion in this figure is defined as a
stable region of the low frequency component by
Eq.(1) obtained form root-loci shown in Fig.11.
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Fig.12 Representative output wave for low
frequency component
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Fig.13 ADIDF of saturation element for low
frequency component
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5.2.2 ADIDF for high frequency component The
equivalent gain for high frequency component K a
can be calculated from Eq.(7), if the DC value BD
is fixed. Then, we regard the low frequency
component as a DC-bias, because the change of low
frequency component in a cycle of the high fre-
quency component is so slow that we can neglect
it. Since Kea is changed with BD, the change of
Kea in a cycle of low frequency is shown in
Fig.14, where K a indicates maximum value when
the amplitude o% the low freauency component is
zero and indicates minimum value when the ampli-
tude of the low frequency component is maximum.
In this analysis, we defined the average of K a
as an ADIDF of the high frequency componen?.
Figure 15 shows the ADIDF ration for high fre-
quency component ¥g¢ ( =N;/K; ) obtained from
above-mentioned method. The shadowed portion in
this figure shows stable region of the ADIDF for
high frequency component determined by Eq.(2).
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Fig.14 Equivalent gain for high frequency
component
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Fig.15 ADIDF of saturation element for high
frequency component

" 5.3 Occurrence mechanism of the self-excited

vibration

By using Figs.11,13 and 15, the process from
resonance vibration of stator shaft to the self-
excited vibration is explained as follows;

(1) 1If the stator shaft is excited by some dis-
turbance as impulse force, the ADIDF for flexible
mode (corresponding to the high frequency compo-
nent) ¥¢ is defined according to the amplitude
of the vibration. As it is obvious from Fig.1l1,
the characteristic roots of flexible mode exist
in left-half plane within the range of 1> .
>0.224 so that the vibration is damped. However,
if the amplitude of the vibration becomes larger,
the ¢ decrease under 0.224. Therefore, the
characteristic roots of flexible mode moves into
right-half plane and the vibration tends to
diverge.

(2)Now we consider the condition that &€¢ =10,
€r =0, then ¢ and %, are pointed by B »By
in Figs.12 and 14, respectively. As it is c}ear
from these figures, both the flexible mode and
the rigid mode(corresponding to the low frequency
component) is unstable. Therefore, both vibra-
tions tend to diverge.

(3)Firstly, we pay attention to the rigid mode.
As it is clear from Fig.13, %, increases with
increment of €r in the region of 0< €, <10 when
€¢ is constant. In case of €£¢ =10, ¥, reaches
the threshold between stable and unstable region
when g, is about 4.5(point Cy). This point is a
kind of equilibrium point, because if &, in-
creases more than 4.5, the characteristic roots
of rigid mode moves into stable region therefore
the amplitude of the rigid mode tends to damp.
On the other hand, if €, decrease less than 4.5
due to decrease of amplitude of the rigid mode,

the characteristic roots of the rigid mode come
back to the unstable region therefore the ampli-
tude of the rigid mode tends to diverge. Conse-

quently, the amplitude of the rigid mode Kkeep
balance in this point.

(4)Secondly, as it is clear from Fig.15, the
flexible mode is still unstable in point C; (cor-
responding to the point Cy in Fig.13) so that the
amplitude of the flexible mode tends to increase.
Now we assume that the amplitude of flexible mode
increase up to €+ =10(point Dl)' As seen from
Fig.13, the rigid mode becomes unstable again at
point D2(corresponding to the point D1 in
Fig.15), because %, decreases with increment of
€¢ when €r is constant.

(5)Thus, amplitude of the both rigid and flexible
mode increase as they are influenced each other.
Consequently, they balance at the boundary point
(Eq,E9) between stable and unstable region, when
Pr =9 and P =11. As it is clear from Fig.1l
that both E1 and E, are located on the imaginary
axis, continuous vibration including two frequen-
cy components occurs.
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Considering the circumstances mentioned above, it
is obvious that rigid mode is caused by flexible
mode. And the flexible mode becomes stable limit
cycle, when %+ decreases less than 0.224 due to
the increasing of amplitude of the vibration, in
case that the disturbance causing the vibration
is not continuous, but impactive. Therefore, the
self-excited vibration with two different fre-
quency will be occurred. However, the rigid mode
tends to toward unstable region when the ampli-
tude of the flexible mode becomes large, though
the flexible mode tends to toward stable region
when the amplitude of the rigid mode becomes
large. Therefore, if the amplitude of flexible
mode becomes larger than ¢ =0.092 due to forced
disturbance such as unbalanced force, rigid mode
becomes unstable.

)

6. Conclusions

In this paper, we discuss the cause and
mechanism of the self-excited vibration occurs on
our 4-axis-active type magnetic bearing which has
been developed for high speed rotating machinery.
The results of this research are summarized as
follows.

(1)The self-excited vibration caused by interac-
tion between flexibility of the stator shaft and
nonlinearity of the electromagnet system in which
phase characteristic becomes worse in the case
where high-frequency, large-amplitude signals are
applied.

(2)The self-excited vibration contain two differ-
ent frequency vibrations, and the rigid mode(low
frequency component) is caused by flexible fnode
(high frequency component).

(3)The rigid mode vibration has apprehension to
become unstable in case that the flexible mode
vibration become large, though the flexible mode
surely beccmes stable limit cycle regardless of
the amplitude of rigid mode vibration.
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