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Abstract

This paper presents an analytical method for tying active magnetic bearing (AMB) controller parameters to rotordynamic
stability analysis. The controller, represented by its component transfer functions, is written into a subroutine appended to a finite-
element rotordynamic program. The controller parameters can be modified until several lower system modes are stabilized. This
method facilitates the controller design and shoriens the tuning effort in instaliling rotor-AMB systems.

Introduction

Turbomachinery users and manufacturers are gradually
accepting AMBs for the advantages they offer, i.e., elimination of the
lubrication system and ability to control stiffness and damping. Stiff-
ness and damping can be manipulated to desired values without
any mechanical modifications by changing resistors and capacitors
of an analog controller, or by changing equivalent parameters of a
digital controller. However, the "desired values" are not yet well
defined for these new rotor-AMB systems.

In conventional rotor systems with oil-film bearings, the
stability of natural modes above operating speed is seldom a
probiem. However, it can be a controller design struggle to stabi-
lize up to two or three of these modes in a rotor-AMB system. If
the controllers are not properly tuned, it is not unusual for a rotor
on AMBs to vibrate out of control during start-up. As reported in a
recent conference”, a rotor was damaged during the installation
and controller-tuning process. Tuning is a time-consuming proc-
ess that involves adjusting and/or modifying the controllef until the
rotor-AMB system is stable and well damped at the lower modes.

Guiding the controller design with system stability analysis
reduces the risk and effort of tuning. However, there is a lack of

suitable computing tools for rotor-AMB systems. The stability pro- .

grams developed during the iast two or three decades for conven-
tional bearings are awkward for use with rotor-AMB systems for
the following reasons:

* AMB stiffness and damping are functions of rotor whirl frequency,
not rotor speed.

¢ AMB reaction forces are proportional to displacements meas-
ured at rotor locations offset axially from the bearing. [1]**

To account for these unusual AMB features, Chen presented
an extended state variable approach in which AMB dynamic be-
havior was represented by a set of first-order difierential equations
appended to the rotor equations of motion. [2] A different method is
presented herein to facilitate the controller design.

Stability Analysis Formulation

Bearing force is defined as
Fy, = -K; G(S) Yo+ Ko Yy (1)

*REVOLVE 89 - A Symposium On Dry Seals and Magnetic Bearings,
September 26, 1989. Calgary, Canada.

**Numbers in brackets indicate references cited herein.

where

= AMB force exerted on rotor
= Current stiffness

= Magnetic stiffness

= AMB center displacement

b = Displacement at AMB sensor
(S) = Controller transfer function

= Laplace variable.
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The stiffnesses K; and K| are functions of bias (steady state)
currents in the magnetizing coils and are key parameters in the
linearized contro! of AMBs.

The transfer function G(S) represents a series of component
transfer functions that are typically multiplied together as shown in
Equation 2.

G(S) = G,(S) G,(S) Gy(S) G(S) (2)

where G,, G,, G5, and G, are, for example, the transfer functions
of the sensor, PID controller, phase compensator, and power
amplifier/coils, respectively. :

Additional filtering schemes, such as band-pass or band-
reject (notch) filters, can be added to Equation 2 as transfer func-
tion muitipliers.

A radial AMB has two identically controlled axes, each repre-
sented by Equation 1. The two axes are perpendicular to each
other and are usually located at 45° angles from vertical to share
the rotor weight. Therefore, the dynamic properties of the axes,
i.e., stiffness and damping, can be made identical. Since AMBs
are generally an order of magnitude less stiff than the conventional
bearings and their pedestals or casings, for most turbomachinery
applications it is adequate to assume circular rotor whirl orbits in
the stability analysis. The resulting equations of motion of a rotor
can be represented by Equation 3.

MI[X] + [CI[X] + [K1[X] = {F} 3)
where
M]

Rotor mass matrix; an assembly of beam element
4 x 4 consistent mass matrices, and concentrated
masses and transverse moments of inertia. [3]
(Y,,6,,Y,,6,....); state vector

diag. (0, -jlp, ©, 0, -jlp,Q2 ......); diagonal matrix
containing only gyroscopic terms

=y

{xy
[C]

—325 —



Y, = Linear displacement of i station

6, = Angular displacement of i" station

Iy = Polar moment of inertia of i" station

Q = Rotating speed (rad/sec)

[K] = Rotor stiffness matrix; an assembly of beam ele-
ment 4 x 4 stiffness matrices, including the shear
effect [3]

{F}* = (---0---F,--0---F,,—-0---); forcing vector containing
only bearing reactions for stability analysis

F,, = Reactionofm"AMB.

For a rotor model containing n stations, the above matrices
and vectors would have an order of 2n.

Stability Analysis Method

Substituting the AMB forces of Equation 1 into the forcing
vector {F} of Equation 3, and rearranging {F} to the left-hand side of
Equation 3, a homogeneous system matrix equation is established
for eigenvalue/eigenvector solution (damped system modes). Since
each F, term is a function of rotor whirl frequency, an iterative
numerical scheme is required to obtain the solution. The steps in
this scheme are: .

1. Generate a conventional undamped natural frequency map at a
fixed rotor speed. The AMBs are represented by incremental
stiffnesses. At each stiffness, calculate the undamped natural
frequencies. The natural frequencies for a given mode, calcu-
lated at different stiffnesses, are connected in a curve.

2. Superimpose the AMB stiffnesses as functions of whirl fre-
quency on the map and locate the approximate system modal
frequencies.

3. For each mode, begin by using these approximate frequencies
as the rotor whirl frequency and calculate the corresponding
stiffness and damping of the AMBs. Use these dynamic prop-
erties to calculate the damped system modes. If the assumed
whirl frequency is equal to (or close to) the calculated damped
frequency, a solution for one mode is obtained. If not, use the
newly calculated frequency (or one close to it) as the new
assumed whirl frequency and repeat this step.

In step 3, the AMB stiffness and damping coefficients at an
assumed rotor whirl frequency are calculated through a program
subroutine that implements a closed-form solution of Equation 2.

Numerical Example

Figure 1 shows a fan rotor supported by two radial AMBs
and a thrust AMB. The rotor has a large fan wheel at one end.
The radial AMBs, which are identical, each have 8 poles, 1-in.
length, and a 2.5-in. journal outer diameter. Pertinent rotor and
bearing data are listed on Figure 1. Dynamically, the AMBs are
tuned to have approximately the stiffness and damping shown in
Figure 2.

A stability analysis program was coded in Fortran with a
static condensation option for saving computing time. [4] Twelve
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Fig. 1 Fan Rotor Model
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Fig. 2 AMB Stiffness and Damping

of the rotor model's 28 stations were taken as "active" stations, as
indicated by the circled numbers in Figure 1.

The undamped natural frequencies at a rotating speed
of 1800 rpm were calculated at bearing stiffnesses of 1 x 104,
4x10% and 1 x 10° Ib/in. The natural frequency map for these
calculations is presented in Figure 3. The superimposed AMB
stiffness curve shows the first four forward modes as 55, 85, 250,
and 480 Hz, respectively.
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Fig. 3 Natural Frequency Map at 1800 rpm

The undamped mode shapes calculated at 4 x 10* Ib/in./
bearing are plotted in Figure 4. The mode shapes show that the
displacements of an AMB and its associated probe have the same
sign (i.e., positive value or negative value). Therefore, the probe
locations are correct for the AMB control. The third mode has a
node at one AMB, which could make controlling this mode difficult.
These mode shapes provide a reference for evaluating the
damped results.
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Fig. 4 Undamped Mode Shapes at 1800 rpm
(4 x 10" Ib/in./bearing)

To perform the damped analysis, a magnetic bearing sub-
routine that is applicable to both AMBs, MAGBRG, was written
according to the control scheme in Figure 5. The subroutine’s first
two data statements contain all the essential control parameters
and can be changed at the keyboard. The subroutine is compiled

separately and is called by the main program. The subroutine
Fortran statements are simple and straightforward.

Damped natural frequencies are plotted against assumed
whirl frequencies with a 45° straight line superimposed. The log
decrements of the calculated whirl modes are marked on the plot.
Numerical iteration efforts to calculate the exact damped frequen-
cies and the associated log decrements are not necessary as long
as there are calculated points nearby. However, for cases of sig-
nificant gyroscopic effect, this plot should be constructed twice —
once at zero speed and once at full speed.

The results of searching the damped natural modes are pre-
sented in Figure 6. Only the forward modes are included as an
example. The first two modes are well damped. This should be
evident by examining their mode shapes in Figure 4 and the
dynamic properties of Figure 2. The third mode (first bending) is
very lightly damped because a node exists at one AMB. The fourth
mode (second bending) is unstable. Although the rotating speed is
low, the fourth mode is at a frequency of high stiffness and is likely
to be excited.

To improve the damping of the two bending modes, a notch
filter is placed to the left of each mode. As shown in Figure 7, these
bending modes are riding on the right-hand slopes of the notches
where large phase leads exist. Even with these large phase leads,
the third mode log decrement is only slightly improved. The fourth
mode, however, became stable.

Conclusions

Stability analysis is crucial to the design process for rotors
supported by AMBs, since instability can be detrimental to these
systems. Separating the dynamics of the AMB from the dynamics
of the rotor during the analysis imposes uncertainty in the stability
results and can lead to lengthy tuning time during system installa-
tion. This paper presents an analytical method for tying the AMB
controller design directly to the rotor mechanical stability. The
controller parameters can be readily modified until satisfactory log
decrements are achieved for several lower modes. This method,
when properly computerized, will take away the guesswork and in
the future may make the installation tuning process unnecessary.
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Fig. 6 Stability Analysis Results for Forward
Modes at 1800 rpm
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Fig. 7 Bending Mode Control Using Notch Filters




