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Abstract

A design method of a dynamic compensator for magnetic bearings levitating a

rigid rotor is proposed.
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The basic control concept is to move not the rotor directly but
The control strategy is to move the angular momentum vector
to the spinning axis for nutation suppression and to move the vector to the

central

position of the stator for precession suppression. It is necessary to estimate the angular

momentum vector.
observer system or rate signals

An easy estimation method is presented here without
A block diagram of the
dynamic compenstor clarifies physical meaning of the cross-feedback.

eigen values of the total system are obtained using

using complex
tootal system including the
Approximate analytic
variabies. Several

complex number

simulation examples are given, showing validity of the approximate analytic solutions

There are two conical modes in whirling
motion of rigid spinning bodies supported by
active magnetic bearings. They are a low
frequency (backward) mode and a high frequen-
cy (forward) one.  The control strategy is to
move the angular momentum vector, H, of the
rotor to the central axis of the stator or de-
sired rotor position for suppression of. the
former mode and to the spinning axis for , sup-
pression of the latter one. Therefore, it is
necessary to obtain signals of H position or
rate signals of tilting angles of the rotor to
control any mode. In this paper, an easy
method for estimation of H without using com-
plex observer system or rate signals is pro-
posed, and a simple method for construction of
a dynamic compensator for suppression of Dboth
modes from a standpoint of physical meaning
are presented. Approximate analytical eigen
values of the total systenm including the dy-
namic compensator are also presented. Simu-
lation examples verify effectiveness of above-
mentioned method. These concepts may suggest
some new control methods of flexible spinning
rotors.

1. Qutline of conical motions

H of the axi-symmetrical spinning rotor
(the rotor, in the following) is governed by
the following simple equation:

dH/dt=T (D

where T is extermal or control torques. There-
fore, H is easily controllable by T. However,
H is invisible, instead, position of the rotor
or the spinning axis, S, is visible and sensed
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Fig. 1 Nutation, precession, coordinate
system and notation

by gap sensors. Generally, in magnetic bear-
ings, T contains at least restoring torque
which is negative and proportional to small
tilt angle, 6, of S, i.e. T=-KO, where K is
restoring coefficient. Yhen H is near to S

direction of the restoring torque is clockwise
as seen in Figure 1. In the field of satellite
control, motion of H is called precession,
whereas motion of S around H is called nuta-
tion. Generally, S draws a cone or a circle
when we see the motion from headside of H.
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The cone angle v is decided by S and H at
each instant, where only H is directly moved
by T. Rotational speed of S around H or nutat-
ional angular velocity seen from stator-side,
h, is independent of magnitude of v when v
is small. h and v are expressed as follows:

h=0 w (2)

where 0 is moment of inertia ratio (Is/Ia4) of
the rotor with spinning speed @ (Ref.{1}), and

=tan '(1a0 /lsw)=0"/h (3)

where ' means Ist order time derivative. Note
that nutation is always anti-clockwise, where-
as precession is clockwise in case of magnetic
bearings, anti-clockwise in case of a top on
the ground where restoring torque is negative.
From above-mentioned characteristics, the
control strategy is easily derived:
(1) For suppression of nutation, H should be
moved to S. '
(2) For suppression of precession, H
be moved to the central position.
In order to do these, we must know H position.

should

2. Equations of motion

Let 0-XYZ be an inertia coordinate system
whose origin O coincides with center of mass
of the rotor, and Z-axis is parallel to the
central axis of the stator. For convinience of
expressing the spinning axis S, let’s adopt a
moving but non-spinning coodinate system, o-xy
Z, whose origin o and 2z-axis coincide with
center of mass and spinning axis S of the
rotor, respectively. Of course, x and y axes
are not fixed to the rotor but always near the
X and Y axes, respectively (see Fig. 1).

Small tilt angle O is decomposed to O«
and 6y, and expressed as a complex number :

(i=v (-1)) (4)

In the following, complex numbers are express-

6=0.+i0,

ed by underlined characters, and ~ means 2nd
order time derivatives. Using Eq. (4), Eq. (1)
becomes

6"—1h0’ +k0 =T (5)

where K =K /Ia and T = (Tx+iT,)/la.
In case of high speed and T=0, we get two
approximate eigen values:

+ 1 h (high freq. or N mode)

—1ik/h (low freq. or P mode )
N and P stand for nutation and precession, re-
spectively. Note that, though, motions of H
include both modes, they comprize almost P
mode alone (Ref. [1}).

In order to visualize attitude of S and I

we define a complex number plane Z=1 on which
real and imaginayy axes are parallel to X and Y
axes, respectively. S and H are the positions
where they cross the plane. Then S is express-
ed as :

§:6y ‘iex'—:'iAgi. (6)
Using Eq. (3), we get
i—$==6"/h (1)

3. Estimation of I

¥e can estimate approximate H, He, from S
using low pass filter (LPF) by eliminating
high frequency mode, N mode. In this paper,
only a first order LPF is used.

[ts transfer
function F, whose time constant is T, is :

F=+tTs)™! (8)

At first, operate F to Ss, a Laplace trans-

formed variable of S. Here, we choose the
breaking frequeacy, 1/7, as follows:

k/h< 1/t <h, (9
Phase lag angle @ of LPF at P mode is

a =tan '(7 k/h) (10)
Using @, we can get more accurate Ho, whose
L.aplace transformed value is H.,, by clockwise
rotation by a ; T

Hes= e "'*FSs (1D

Sometimes, gain correction may be required

4. Feedback torque for stabilization

Required Laplace transformed feedback
torque divided by la, Ts, for suppressing two
modes is expressed as follows:

Ts = -Kolles - Kn(Hes-Ss)
=-(Kp + Kn)Hes + KnSs

:'"Kpn_H_e_s + Kngi (12)
where Kon = Ko + Ka (13)

Kon may include gain correction for Hes esti-
mation. KX, and Kn are feedback gain for P and
N modes suppression, respectively. Using Eq.
(6) and Eq. (11), Eq.(13) becomes :

Ts =(-Kene *°F + Kn)(-i0 5) (18)

where O < is Laplace transformed variable of
0. Clearly, ©Eq. (14) expresses the inter-
axis cross coupling feedback (or simply, cross
feedback).
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5. Compensated system and eigen values

Through Laplace transformation of Eq. (3),
and using Bq. (14), we @get the following 3rd
order characteristic equation :

Ts3+(1-ith)s?*+i T k+i(T Ka-h)]s
+k-Knpsina +i(Kn-Kencosa )= 0 (15)
Under the condition of Ineq.(9) and small
region of Kn and K, approximate eigen values
of three modes, A n, Ap and A . (T mode) are :

~(Kn/h)+ih (1-Kn/(T h®)) (186)
~(Ke+ik)/(h-TKn) amn

+1[ 7 k(Ko +Kn) /0] (18)

From Egs. (18) and (17), it is clear that the
compensation or the cross feedback gives N and
P mode dampings which are proportional to Ka
and Kp, respectively. And these results show
validity of control law, Eq. (12), derived from
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Fig. 2 Root loci of compensated system

Inequality (19) gives some restrictions on T
and Ka at low ratation speed. The second term
of Eq. (18) shows that too large Kn and XK. may

standpoint of dynamics. Egs. (17) and (18) introduce instability in 7 mode at low rotat-
show that restoring coefficient, k, has no ef- ion speed. In any case, we should pay attent-
fect on damping but effects for increasing tons to variation of rotation speed
vibratory frequencies, though indispensable to ) Figure 2 shows root loci where Ky an@/or
stability at low rotation speed. In Eq. (17), Kn increase from zero to some high values in a
it is required for stability that denominator numerical examyle shown in the next chapter.
be positive : A block diagram of the compensated total
system is shown in Fig.3, where F, e *" and
h > 7Kn (19) cross-feedback are described concretely
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6. Numerical simulation examples

The following modei was used and run by
computer: 0 =1Is/la=0.5, h=0 w=1000{rad/
si, k=1.51x10°Is" %], 7=2.73(ms;, 1/7T =366
(rad/si, a=22.4{deg], k/h=151lrad/s].

Figure 4 is a case of no control ( Kp=Kn=
0 ). 0f cource, there is neither divergence
nor convergence. In addition to loci of S and
H, a locus of the signal passed through the LP
F is shown by dotted line where some gain re-
duction 1is observed -and measured value of
phase lag angle, a, is 25[deg].

Several cases with K, and/or Kn are simu-
lated. TResults are the same as Fig. 2.

In Fig.5 two gains have non-zero values
(Kn=Kp=1.58x10°%{s"2]). Both modes decay rapid-
ly. At the beginning of the H motion, H goes
outside. This comes from a mistake where zero
was given as the initial value of LPF, indica-
ting He is at the origin, therefore, H was
moved to S direction.

Effects of a correction is difficult to
estimate by analytical solution. Here, root
loci of the above-mentioned model when a is
varied are shown in Figs. 6, 7 and 8.
Effect on P mode is shown is Fig. 6 where the
nominal value is on the best position. Effect
on N mode is shown in Fig. 7 where the nomin-
al value is on not so good position, but the
negative real part is almost the same as P
mode, therefore, it is unnecessary to change.
Figure 8 is the case of T mode, where the
nominal value position has quite large magni-
tude of negative real part. Again, therefore,
it is needless to change. In this example, a
correction brings about 30% increase of damp-
ing of both X and P modes.

It is interesting to note that phase ad-
justment can be attained by geometrical rotat-
ion of signals on the rotating plane.

Fig. 4 Loci of S, H and He of
uncontrolled system

&

Fig. 5 Loci of S and H of
controlled system
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