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Abstract

Decentralized control is a typical strategy for controlling a rotating shaft/rotor using magnetic bearing actuators.
It is often chosen for its simplicity of design and ease of implementaticn in analog circuitry. However, in high
performance systems where high bandwidth is required, decentralized control may not be appropriate. This paper
numerically analyzes the decentralized control of a Jeffcott rotor and shows that system bandwidth decreases as
rotor rotational velocity increases. The paper then compares the performance of a centralized and a decentralized
controllerto illustrate that the higher bandwidth achieved using centralized control has significant performance

advantages over decentralized control.

1. Introduction |

Decentralized control of magnetic bearing
systems has been the subject of much research
in both the commercial and academic communi-
ties. A review of magnetic bearing literature re-
veals that decentralized control exhibits ade-
quate performance while being simple in design
and implementation [1,2]. Most applications
concern fixed platform land based rotating sys-
tems whose primary disturbances are gravity
and mass unbalance loading. In such applica-
tions, high system bandwidth is not required to
maintain stability and special means are used to
allow operation beyond shaft critical speeds.

This paper addresses the bandwidth limita-
tions imposed by using decentralized control
and suggests that for systems operating in a
moving platform environment with a dynamic
disturbance envelope, such as a high perform-
ance jet engine, decentralized control may not
meet performance requirements.

Numerical analysis is used to determine
closed loop bandwidth of a system which con-
sists of a rotating shaft/rotor with a four axis ra-
dial control scheme, each axis having a position
and velocity sensor and P-D controller. The in-
dividual controllers are decoupled (i.e. decen-
tralized control).

The rotor model used is the Jeffcott rotor. In
this model, the rotor is taken to be a mass exhibit-
ing inertia attached to a massless shaft character-
ized by stiffness and damping. The Jeffcott model
is both controllable and observable for all rotational
rates. The magnetic bearing actuators are assumed
to be linear force devices and are not considered in
the analysis. Mass unbalance and gravity are also
ignored.

A decentralized controller has eight feedback
gains, a number that is insufficient to independ-
ently place the twelve plant poles. This paper uses
numerical methods to show that at high plant rota-
tion rates, stable decentralized control dictates low
control gains and, as a result, severely limits the al-
lowed system bandwidth.

Since the Jeffcott rotor is both controllable and
observable, a centralized control scheme will allow
unrestricted system bandwidth via independent
pole placement. This implies that any desired per-
formance can theoretically be achieved. Since the
system poles can be placed at any desired location,
the problem of critical speeds does not arise.

The paper first presents the Jeffcott rotor model
in a normalized state space form. Normalization al-
lows the plant to be characterized by five inde-
pendent ratios. A decentralized feedback gain ma-
trix [G] is introduced and the closed loop system
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is formed. Decentralized control requires velocity
sensors or velocity estimators. The [G] matrix is
combined with the feedforward [D] matrix, created
by the velocity sensors, to form a new [g] matrix
which is combined with the [A4, B, C] system matri-
ces to complete the closed loop system. In order to
facilitate calculations, the rotor is taken as a sphere
at the center of a massless rod and, because of sym-
metry, the four P-D controllers are assumed to be
identical.

The numerical analysis consists of calculating sta-
bility regions of decentralized control gains for var-
jous rotational operating speeds. The results show
that as the rotational rate increases, the stability
region decreases and that the gains are limited to
a region of lower values. As a consequence of the
reduced gains, system bandwidth decreases with in-
creasing rotational velocity. This conclusion is sup-
ported by bandwidth estimations from closed loop
pole locations.

A performance comparison is made between a de-
centralized controller and a centralized, optimal full
state feedback controller. The comparison is based
on step response and disturbance rejection simula-
tions done under identical operating conditions.

2 Jeffcott Rotor Model

To generalize results, the Jeffcott rotor model is
expressed in normalized form. That is, it is ex-
pressed in terms of dimensionless ratios and there-
fore made dimensionless. The model is presented in
state space form, and no derivation is included. For
a Lagrangian based derivation, see [3], for a Newto-
nian based derivation, see [4].

The Jeffcott model consists of a rotor on a flexible
shaft which is characterized by stiffness and damp-
ing terms. The magnetic bearing actuators are not
considered and the Jeffcott model accepts force in-
puts. The plant can be described in twelve states.
Four states describe the rotor positions and veloc-
ities in the Y-Z plane, the X-axis is the axis of ro-
tation. Four states describe pitch and yaw angle
and rates and the remaining four states describe the
amount of bending a shaft has incurred. Figure 1
illustrates this concept for the Y-axis.In the figure,
Y, defines the Y-axis rotor position, £, defines the

pitch angle, Y, represents the Y-axis position sensor
output at bearing 1. The Y; position is comprised
of two parts, Yg; which represents the position of
an stiff shaft deflection, and Dy; which represents
the amount that the shaft has bent on the left side
of the rotor. w, is the rotational velocity about the
X-axis.

The complete set of system matrices in normal-
ized form appear in Appendix A. The plant state
vector is defined as [x]* =

[Yr; EZ, Zr;fly}.,néh Z.raf-l: DYly DZI) DYZ) DZZ]-
The plant input vector is defined as
[u]* = [Fy1, Fz1, Fy3, Fz2]

and the state output vector,shaft position and ve-
locity information at each bearing, is defined as

[y]t = [YI)ZIyYZyzzy ;I)leiyz’zz]‘
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Figure 1: Flexible Shaft Definitions

The model is normalized by defining basic system
units as follows:

1 unit of length L1 meters
1 unit of time = 31.—. seconds

1 unit of mass = Mkg

where L1 is the distance from magnetic bearing 1
to the rotor center, M is the mass of the rotor, and
So is the ratio of shaft stiffness to damping in sec™!.
Using these as basic units, a unit of force can now

be defined as
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1 unit of force = M*L1*S52 newtons.

The damping factor associated with the shaft be-
tween the mass and bearing 1 is B1. Its normalized
value is ‘17 and is defined as

1 _ B1/M

v So

Since (B1/K1) = So, where K1 is the shaft stiffness
constant for the same shaft section, the normalized
value of K1 is ‘1—, as well. The radial inertia of the
rotor, Jr, has the normalized value '-711— with

1 _ Jr
m — M«L13"

and to complete the normalization, three other ra-
tios are defined as

T

I
|
I

=
3

I
F

a = J—r*w

where w_is the angular velocity of the rotor and Ja
is the axial rotor inertia.

To provide meaning to these normalizations, we
will present a set of plant parameters in standard
MKS units and their normalized equivalents in Ta-
ble 1. to them:

Normalized

Parameter Physical

units units
Mass M 100 Kg 1
Shaft stiffness K1 | 4 x10° Zeuion 1/100
Shaft damping B1 | 2000 Fewton-sec 1/100
Length L1 1 meters 1
Inertia Jr 1 Kg — meter? 1/100
So = K1/B1 2000 sec™! 1

Table 1. Plant Parameters

3 Numerical Analysis

The system equations in standard state space form
are

x=Ax+ Bu
y=Cx+ Du
u=-Gy

with A, B, C and D given in the Appendix and nor-
malized G being

G111 0 0 0 G21 0 0 0
0 G11 0 0 0 G21 0 0
0 0 G12 0 0 0 G22 0
0 0 0 G12 0 0 0 G22

We assume the plant is completely symmetric so
that G11 = G12 and G21 = G22.

The feedforward matrix D and the feedback ma-
trix G can be combined to form a single feedback
matrix g as follows. Substituting in for y, u be-
comes

u=-GCx-GDu.
Solving for u yields
u=-[I+ GD]™! GCx.
That is

u = - gC x where
g=- [I + GD]_l G.

Thus the system can be modeled with the four ma-
trices 4], [B], [C], 9], and the closed loop system
matrix becomes

Aq = A-BgC,
where g is
gl~0 0 0 g2 0 0 O
0 gt 0 0 0 g20 O
0 0 g1 0 0 0 g2 0
0 0 0 g1 0 O 0 g2

For the plant parameters of Table 1 and with r =
1 and with a = w, so that, m = 100, v = 100, nu-
merical analysis was used to determine the stability
region of the gains g1 and g2 as a function of the
normalized rotational velocity, w.

The objective of the analysis is to determine, for
a given w, the range of gains over which the system
is stable and to determine the maximum achievable
bandwidth for that w. Bandwidth can be defined
in many ways. Here, however, for all w there is a
pole pair closer to the origin than any other system
pole, and it is reasonable to take for the system
bandwidth the real part of these poles, since the
inverse of this is a measure of system settling time.

The stability of the closed loop system was
tested for the logarithmically spaced gain vectors
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[91(2),92(j)] in the range of 10~° to 103. This was
done for selected values of w. Figure 2 shows the
composite stability regions in the (g1, g2) plane. As
the figure shows, the stability region is a maximum
at small w, and becomes progressively smaller as w
increases. Further, the gains are limited to lower
values. This suggests the system bandwidth must
decrease for increasing w. The bandwidth results
are summarized in Table 2 which contains the w of
interest, the maximum bandwidth at that rate, and
the gains which created that bandwidth. Note that
the table is in scaled units.

w gl g2 Bandwidth
0.01 1000 1000 4.92x101
0.02 1000 1000 4.87x107!
0.03 1000 1000 1.57x10!
0.04 1.00 8.90x 107! | 7.08 x 1072
0.05 1.00 8.90 x 1071} 6.26 x 1072
0.06 1.00 8.90 x 10~ | 4.73 x 1072
0.07 | 413 x107* | 8.49 x 1073 | 4.55 x 1072
0.08 [ 4.13 x 107* | 8.49 x 1073 | 4.55 x 10~2
0.09 | 4.13x107* | 8.49 x 102 | 4.54 x 1072
0.10 [ 413 x 107 | 8.49x 1073 | 4.54 x 1072
0.14 | 413 x 107% | 8.49 x 1073 | 4.54 x 1072
0.20 [ 4.13 x10°% | 8.49x 1073 | 4.52 x 10~2
0.30 | 413 x 107* | 8.49 x 1073 | 4.52 x 1072
0.40 | 4.13 x 10~* | 8.49 x 1073 | 4.52 x 1072
0.50 | 4.13 x107* | 8.49 x 1073 | 4.52 x 1072

Table 2. Decentralized Control Summary

To provide meaning to the scaled units, w =
.01 rads/pseudoseconds (psec) corresponds to 20
rads/sec or a 3.18 Hz rotational rate and the band-
width of .49 rads/psec correspond to 980 rads/sec or

~a 156 Hz bandwidth. At w = .1 rads/psec, a 31.8 Hz
rotational rate the system bandwidth falls to .0454
rads/psec or 14.5 Hz bandwidth. Clearly, as the
rotational velocity increases, the system bandwidth
decreases. It must do so for decentralized control.

4 Performance Comparison

In order to illustrate the consequence of bandwidth
limitations imposed by decentralized control, a com-
parison of performance will be made using both cen-
tralized and decentralized controllers operating on
the same plant under the same test conditions. Step

Stability Region lar Decentalized Control

STABLE

Velocity gain g2

Figure 2: Composite stability regions

response simulations are typically used as perfor-
mance measures in control system evaluations and
were used here. Additionally, d.c. disturbance sim-
ulations were run to illustrate the rejection proper-
ties of both controllers.

The simulations were run using the normalized
system, so time is expressed in pseudoseconds (psec)
where 1 psec = 1/2000 sec. For the tests, the ro-
tational velocity of the rotor was set at /.02 or
.141 rads/psec. This corresponds to the plant reso-
nant frequency, where w? = 2K1/M, or w? = 2/v.
The gains for the decentralized controller are such
that they provide the maximum possible bandwidth
for a stable configuration. The gains used are
Iposition = 4.132 x 10_4 and Juelocity = 8.49 x 10—3-
The decentralized closed loop bandwidth is dictated
by the pole pair at —0.0454 +0.0666;.

The centralized control system used is an opti-
mal state feedback controller. Centralized control
has additional degrees of control freedom which al-
lows for complete and independent pole placement.
Therefore, the resulting closed loop bandwidth is
not limited, and can be made any value desired.
For the purpose of comparison, it was made to be
approximately 6 times the closed loop bandwidth of
the maximum decentralized controller bandwidth.
The centralized control closed loop bandwidth is
dictated by the pole pair at —0.2869 +0.2754;.

Figure 3 contains the closed loop frequency re-
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sponses of the centralized and decentralized sys-
tems. The loop is measured from position command
input to rotor position output. It clearly illustrates
the increased bandwidth afforded by using a cen-
tralized control system.

A step response simulation of the two systems is
shown in Figure 4. The command input is a step of
1.27x10~* meters (5 mils) of rotor position in the Y
axis. The time, in pseudoseconds, represents .1 sec-
onds. The centralized controller response is close to
ten times faster, with much less over-shoot. Figure 5
contains the rotor position when a d.c. disturbance
to simulate gravity is applied. Again the centralized
controller dramatically out-performs the decentral-
ized controller. The time of response is much faster,
but more importantly, the magnitude of the rotor
displacement is 100 times less in the centralized con-
trol response. The decentralized control rotor may
have exceeded its hard stop limit just from the ap-
plication of gravity. In a jet engine application, the
disturbance envelope can include load at up to ten
times gravity [5] and clearly, a limited bandwidth
decentralized control strategy is not adequate.

Closed Loop Frequency Response
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Figure 3: Closed loop frequency responses

5 Conclusion

A normalized version of the Jeffcott Rotor model
was presented. Stability regions for decentralized

control were determined as a function of rotor ro-
tational velocity. From those stability regions, the
maximum closed loop system bandwidth design was
found, and the bandwidth and the associated decen-
tralized controller gains were noted. It was shown
that as the rotational velocity increased, the maxi-
mum bandwidth achievable decreased due to a de-
crease in the stability region of the decentralized
control gains to lower and lower values. To quan-
tify the lower bandwidth forced by the use of de-
centralized control, a high bandwidth, centralized
control system was designed using optimal full state
feedback techniques and a performance comparison
between the two control systems was done under
identical operating conditions. The centralized con-
troller clearly has significant performance advan-
tages over the decentralized controller in both step
response and disturbance rejection tests.

x10+4 Step Response Simulation
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Figure 4: System step responses
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