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Abstract

This report provides a novel representation of a magnetically suspended rotor consisting of a single inertia, sup-
ported on a massless shaft exhibiting stiffness and damping (the Jeffcott model). The state variables are chosen in
a way that allows the plant to be transformed into subsections. These subsections independently account for trans-

lation, rotation and bending. The report also derives observability and controllability matrices for the Jeffcott ro-
tor.

1 Introduction

This effort provides representations of a mag-
_ netically levitated rotor consisting of an inertia
on a shaft. The inertia is not centered and the
magnetic forces act on the shaft ends where the
system sensors are also located. The study,
which extends the work of Johnson[1] and Mc-
Callum[2] includes two plant models. In one
model the shaft is rigid. In the second, the Jeff-
cott model, the shaft bends. In both, the shaft is
taken as massless, which allows the second
model to be treated as an embellishment of the
first. The development assumes an isotropic
shaft with intemal damping only. The result is a
plant that becomes unstable, and remains so,
above the first critical speed, a spin rate corre-
sponding to the undamped natural frequency of
plant translational oscillations when the spin
rate is zero.

The plant equations used for the Jeffcott
model are identical to those derived in McCal-
lum[2]. However, the plant state vector is de-
fined in a different way. The equations account
for both translation and rotation of the shaft and
include gyroscopic effects.

Unlike the work of McCallum, it is assumed
in this document that the magnetic bearings are
compensated. This is justified since the gap
compensation must be part of a design effort in
any case. Here, it is assumed local feedback at

each bearing removes the position dependence, and
thus, the negative stiffness element associated with
bearing magnetic field.

Johnson[1], considering translational motion only,
showed that the Jeffcott model is both controllable and
observable at all spin rates. McCallum[2] extended this
result to include radial rotation and its associated gyro-
scopic effects, but provides no determinant for either the
controllability matrix or the observability matrix. These
are supplied in closed form in this report.

2 Model References

Initially the equations are cast to include linearized
terms that represent uncompensated magnetic bearings.
Later it will be assumed that the bearings are compen-
sated, and the magnetic terms will be dropped from the
analysis.

The rotor is taken to be an inertia on a shaft sup-
ported at its ends. The inertia is at a distance, L1, from
the leftmost support, and a distance, L2, from the right-
most support. Figure 1 presents a side view and shows
vertical forces. Horizontal forces can be shown in a like
manner. Axial motion is not considered.

The spin axis of the rotor is taken to be along the X
axis with clockwise spin being a positive angular rota-
tion, o, . Vertical motion is along the Y axis, and hori-
zontal motion is along the Z axis. The yaw angle, gl, is
about the Y axis, and the pitch angle, §2, is about the Z
axis.
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In Figure 2 the spring constant for the magnetic
bearing at bearing 1 in the vertical direction is
-Ky1 and the vertical force, Fsyl, acting on the
shaft satifies

Fsyl = Fyl+ KylxY1

where Y1 is the vertical displacement of the shaft
end, and Fyl is a plant input. Note that the force
on the shaft due to the bias field Ky1*Y1 increases
with displacement. The forces Fsy2, Fszl and Fsz2
are similar in form.

The spring, dashpot combination (K1,B1) is
used to model the shaft stiffness and damping be-
tween the inertia and the leftmost support, while
the combination (K2,B2) models the other section.
Since both stiffness and damping are inversesly pro-
portional to length they can be expressed as a ratio

K1 _ K2
Bl B2 7%

Figure 2 shows the spring-dashpot combination for
the shaft at the leftmost support from the rear. The
couplet (Y1,Z1) defines the position of the shaft
while (Ysl,Zs1) is the end of the shaft without
bending. If the pitch angle is small.

Ysi=Yr—Llx¢§

The difference Ysl - Y1 is due to the deflection of
the shaft and is represented by the variable DY1.
DY2,DZ1, and DZ2 are defined in a similar manner.
The inertia of the plant about the X axis, is J,. The
inertia about the Y axis and the Z axis, is J,. It
is assumed in the analysis that the pitch and yaw
angles are sufficiently small and that the values of
J, and J, are independent of plant motion.

3 The Jeffcott Model

From Fig. 1 the forces acting on the rotor in the
vertical direction are Fsyl and Fsy2. These forces
tend to move the rotor both in translation and ro-
tation. The equations for the translation motion,
neglecting gravity is

Fsyl + Fsy2 = M «Yr

where M is the rotor mass. The equation for the
rotational motion is

L2*Fsy2—L1*Fsy1:Jr*fnz—Ja*w,,*f.l

where Ja * w, * £ is the gyroscopic torque caused
by changing the yaw angle as the rotor spins about
the X axis with angular velocity w,. If the rotor is
balanced the equations can be written as

(Kyl+ Ky2)«Yr (L1xKyl - L2~ Ky2)=§;
M N M
Fyl + Fy2
+ M
(Kz1 + Kz2)* Zr + (L1 Kz1 — L2 Kz2) x &
M M
Fzl1 4+ Fz2
M
(le « Kyl 4+ L2? * Ky2) = &
Jr
(L1x Kyl — L2x Ky2)xYr
- Jr
—L1«Fyl + L2 x Fy2 + Ja xwz « €1
Jr
(L1? « K21 4+ L2? « Kz2) = §; -
Jr
(L1 Kz1 — L2~ K22) *x Zr
+ Jr
L1%xFzl —L2xFz2 — Jaxwz * &
+ Ir .

Yr =

Z"r =

& =

& =

These equations coupled with
Y1i=Yr—Llx§; Y2=Yr4+L2x§{
Z1=Yr+ L1x&; Z2=Yr—L2x§

describe the rigid plant. The state variables are

[},1')62) Zr)£1)Y.r)£.27 Z‘ryél]'

Figure 2 shows the deflection of the shaft as seen
from the leftmost support or bearing 1. The force
acting to bend the shaft, Fsl, is the vector sum of
Fsyl and Fszl. The deflection of the shaft at the
bearing, DR1, satisfies

Fs1=K1%DR1+ Bl DRL.
The forces, Fsyl, and, Fsz1, can be written as
Fsyl = K1x Cos(6) x DR1+ B1 x Cos(6) * DR1

Fszl = K1 % Sin() x DR1 — B1 x Sin(8) «+ DR1.
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Since,

The output vector is defined as

DY1 = Cos(6)* DR1 [yt = Y1,Y2, 2, Z,).
DZ1 = Sin(6)xDR1

DY1 = Cos(6)* DR1 - w,  Sin(6) x DR1 where

DZ1 = Sin(6) = DR1 - wgz * Cos(8) x DR1

we can write the force equations as

Fsyl = K1+ DY 1+ Bl + (DY 1+ w, « DZ1)

Y1 =Yr-Ll1x¢ +DY1;

Z1=2Zr+ L1 ¢ + DZ1;

Y2=Yr+L2x¢; +DY2

Z2=2r - L2~ ¢ +D2Z2.

Fszl:Kl*DZl+Bl*(D:ZI—wz*DYl) Y1 = KII;IY'+,;,+%,(Z,+L“&_21)
Fsy2 =K1+ DY2+ Bl+(DY2+w, + DZ2) ' KieLieg _
Fsz2 = K1+ DZ2 + B1+(DZ2 + w, x DY?2). T TE o e
; Kyl-K1)-v1 + Fu
Crandall[3] speaks of the cross terms in these equa- K2x¥r B1 B1
. «Yr
tions as being quasi— gyroscopic. They provide the Y2 = Bz TYrtwsx(Zr- L2« - 22)
mechanism for coupling energy from the rotor spin L K2xLags o é
into rotation of the shaft deflection, the shaft whirl. B2
These results can be recast as equations for the + K2 -K2)-¥2 Fy2
additional state variables [DY1, DZ1, DY2, DZ2] B2 B2
thus 51 = KixZr 4 ~Yr+ L1 z
) = B1 + "+W::"‘( r+ * €2 + 2)
K1xL1x§ .
py1=TV L K=Yl o Y1—w, D21 —p1 T4
B B 4 4 (Ks1- K1)« 71 Fnl
D71 Fz1  Kz1x21 S. D3 DY1 | K2 2r ’.31 Bl
1"H+ Bl o 1—wgx Z2 = B3 +2r+wsx(=Yr - L2x¢ +Y2)
N K2~<L2x¢§ :
Di’2=%+£y;Tn—so*Dyz+w,*Dzz - T —L2x§
' +(K12—K2)*Z2 Fz2
P Fz2 Kz2x22 -« B2 B2
DZ1 = B2 B2 — SoxDZ2 4 wgy x DY 2, .

The state vector [x]* for a shaft with bending can
now be defined as ,

[Yr &2, 20,61, Y, €2, 2+, €1, Dy1, Dzy, Dyq, Dg3).

With no mass imbalance, the forces acting on the
rotor are

The translational forces are

Fyr = Fay2 + Fay2;

and the torques are

Te2 =
Tel

Fzr = Fszl -.{»Fa.ﬂ

—L1 x Fsyl + L2 x Fay2
L1 % Fszl — L2 x Fsz2.

These results completely describe the Jeffcott
model with internal damping. Fig. 3 shows a Block
diagram of the model. The subsection for bending,
translational and rotation can be easily identified.

Fsyl = Fyl + Kyl xY1; Fsy2=Fy2 + Ky2xY2

Fszl = Fz1 + Kz1x Z1; Fsz2 = Fz22 + K22 » 22.

For compensated bearings, bearings with drives so

designed that forces on the shaft due to the end
positions are removed by local feedback, the stiffness
constants [Kyl, Ky2, Kzl, Kz2] are zero and the
plant input vector is defined as

Normalization

The model is normalized in the following way. Let

1 unit of length = L1 meters
, 1 unit of time = 51_0 seconds
[u]" = [Fy1, Fz1, Fy, Fz,] 1 unit of mass = Mkg
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Therefore,
1 unit of force = M*L1*5¢ newtons.

The damping factor associated with the shaft be-
tween the mass and bearing 1 is B1. It’s normalized
value is 1 where

1__ Bl
v M=xSy

Since %% = So, where K1 is the stiffness constant
for the same shaft section, the normalized value of
Klis '1—1 as well. The inertia, Jr, in normalized terms
becomes

1 _ _Jr
m — M=L1%"

To complete the normalization, three other ratios
are required

; = L2_K2B2
= 1I1 — Ki B1
— w,
= J§0
— [
a = Jr w.

For the system equations in the standard state space
form

x = Ax+ Bu
y = Cx+ Du

The normalized plant matrices are:

(4] =
o o o 0 1. o 0 O O 0 0 o ]
o0 0 0 0O 1 0 O0 O 0 0 0
o0 000 O 1 0 O 0 0 0
o0 0 00 O O© 1 O 0 0 0
00 00O O OO O 0 0 0
o0 00O O O a O 0 o .0
00 ¢ 00 O ¢ 0 O 0 0 0
00 0 0 0 —a 0 0 O 0 0 0
o 0000 O 0O -1 —w O 0
o 0000 O 0O w -1 0 0
o0 00O O OO0 O 0o -1 -w
Lo oo oo o o0 © 0 w -1 |
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5 Controllability
The system controllability matrix is
[C,] = [B][A x B][A? x B).

In normalized form it is equal to

0 0 0 0 1 0o 1 0 0
0 1] o 0 -m 0 mr 0 0
0 0 0 0 0 1 0 1 0
0 ) 0 0 0 m 0 —-mr am
1 0 1 0 0 0 0 0 0
-m 0 mr 0 0 am o —amr  a’m
0 1 [ 1 0 0 0 0 0
o m 0 —-mr am 0 —amr o 0
v 0 0 0 v —vw 0 ) —v?
0o v © 0 w  —v 0 0 viw
V] 0 rv 0 0 o —rv —rvw V]
L © 0 0 rv 0 0 rvw —rv 0
and

det[C,] = (mv(r+ 1))4*1'2*(1 + wz)s*(l + (w—a)z).

Thus, det[C}] is positive, and the plant is control-
lable, for all choices of plant parameters, except r =
-1. This simply means the plant requires two sepa-
rate bearings to be controllable.

6 Observability
The observability matrix is «
[0s] = [[C][C * BI[CB?]]".

In normalized coefficients [Op] =

1 -1 0 0 0 0 0 O 1 0 0 (]
1 r 0 0 0 0 0 O 0 1 0 0
0o 0 1 1 0 o0 1 0 0 0 1 0
0 0 1 -r 0 0 o0 1 0 o 0 1
6 0 0 0 1 -1 0 0 -1 —w 0 0
0 0 0 0 1 r 0 O w -1 0 0
0 0 0 0o 0 0 1 1 0 0 -1 -w
6 06 0 0 0 0 1 -—r 0 0 w -1
0 0 0 0 0 0 0 -a (1-w? 2w 0 0
0 0 0 0 0 ©0 0 ar 2w (1-w?) 0 0
0 0 0 0 0 -a 0 O 0 0 (1 - w?) 2w

|0 0 0 0 0 -ar 0 0 0 0 “2w (1-w?)

and

7 Conclusion

The observability and controllability matrix for the
Jeffcott model shows that the system is both observ-
able and controllable for all rotation speeds. The
model can be been decomposed into a translational,

0 0 0
am [ —amr
0 0 0
0 —amr 0
0 [} 0
0 —a’m 0
0 0 0
a?m 0 alm
-viw 0 0
—v? 0 0
0 —rv? —rvw
0 rviw —v? ]

rotational and bending subsection. An attractive
feature of this model is, independent control laws
can be designed for each subsection and filtering re-
quirements can be tailored to meet their particular
needs.

det[0y] = (1'+1)2*(w2+1)2*[(r+1)2*(w2+1)2+a2*(w*(r—1)+(1‘+1))2}.

Thus, det[Oy] is positive and the plant is observable
for all choices of plant parameters, except againr =

-1.
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Figure 3. Block diagram of the Jeficott rotor.
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