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Abstract

This paper deals with the problem of an unbalance vibration in magnetic bear-
ings. A rigorous modeling of a magnetic bearing system to achieve a rotation of the

rotor around its axis of inertia is made.

Then, an effective control scheme is proposed

based on the state-space approach. The objective of the control scheme is to construct

a controller which preserve internal stability and reject the disturbances.

To solve this

problem, output regulator with internal stability are introduced. The effectiveness of
the proposed controller is demonstrated by a numerical example.

1. Introduction

Magnetic bearing systems have become prac-
tical in many industrial fields and numbers of
studies for magnetic bearing systems have been
reported. Especially, active control type mag-
netic bearing systems have been studied because
of their several attractive features.

On the other hand, two critical problem
exist in a application of the magnetic bearmg
systems. One is the problem of the interference
caused by gyroscopic effect and the other is the
problem of the vibration caused by the unbal-
ance on the rotor. We deal with the latter
problem.

In this paper, to solve this problem, a rota-
tion of the rotor around the inertial axis is con-
sidered. First, a rigorous modeling of a mag-
netic bearing system in which the rotation of
the rotor is on its axis of inertia is developed.
Next, an effective control scheme is proposed
based on the state-space approach. Finally, the
effectiveness of the proposed controller is
demonstrated by a numerical example.

2. Modeling

In this section, we derive the state equation
of a magnetic bearing system in which the rota-
tion of the rotor is on its inertial axis with the
following assumptions:

(1) The rotor is rigid body.
(2) The unbalance is in the radial direction

only.

(3) The unbalance is arbitraryly small such that
the rotor rotates around the axis of inertia
within a region that nonlinearity is negligible.

In this study, our interest is concerned in the
relatively small motion about the equilibrium
point and in the control problem of the radial
direction. '

Unbalance

The coordinates of the rotor x,v,z, , called
inertial axes, are set as shown in Fig. 1. ¢ is the
distance between the center and the center of
mass of the rotor, and ris the angle of the iner-
tial axis to the geometrical axis X;. Fig. 2 shows
the relationship between the coordinates of the
stator and the rotor. The position of the center
and the center of mass of the rotor are given as
F(z;,y7,2) and G(z, 9, ,z), respectively. When the
rotor rotates around the inertial axis inclining
at an angle of -, the following equations hold in
the relationship between the center and the
center of mass and in the relationship between
the geometric axis and the inertial axis, respec-
tively.

r ecos(d+k
[Z;:‘ = [zr:‘ + [ssin((qfiﬁ)):l (1)
6 b, Tcos(¢+A)
m - M " Lsingw)] ! @)

where « and ) are initial value. These two equa-
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Fig.3 Structure and variables of
magnetic bearing systems

tions are arranged in a vector form by writing Equations of Motion IR
PR— (3) The dynamical equations of the magnetic
bearing systems in which the unbalance of the
where v ; . . . .
rotor is taken into consideration are given as
¥y Yr ecos(pt+r) follows .
2f _ | % _ |esin(pt+k)
Tf = 6;] " =6, w= [Tcos(pt+/\)‘) ‘
¥y ¥, Lrsin(pt+X)
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m : mass of the rotor

p : rotational speed of the rotor

J, : moment of inertia about X,

J, : moment of inertia about v, or z,

I, : length between the center of mass and the
point of the force by the radial electromagnet of
the right or left hand

fofi © attractive force by each electromagnet of
the right or left hand,i =1~ 4

o : coefficient of the attractive force by the
induction motor due to the shift of the rotor in
the radial direction

Dynamical Equations in Electromagnet

Fig.3 shows the principle of the magnetic
bearing systems. We use subscripts ri (i=1~ 4
), i (i=1 ~ 4) to denote each electromagnet.
Letter represents the voltage
applied to each electromagnet. Similarly, i; and
s; denote the current flowing into each’elec-
tromagnet coil and the gap length between the
rotor and ‘each electromagnet, respectively.
Using a linearization, the forces applied on the
rotor by each electromagnet are written as fol-
lows in a matrix form in terms of the vector 4,
and the vector i..

¢; (3=ri or 1)

f = Cogpt-Csi = CoC12+Cii (6)

,,,,,,,,

where g =[gn" 90" 95" 95" 17, i=[in" i i is" 1",
where letters with a prime denote a variation
about the equilibrium point (cf.appendix).
Substituting (3) into (6) yields

f = CyCy2,4Cyi+C,Chw. ‘ (7)

In an electrical circuit including the electromag-
net coil, the following dynamical equation holds.

d R 1
== —=Ti+— 8
dt' 7 l+LIe ( )
where
€= [ eﬂl erl, 613’ 8,.3' ] T 9

R :resistance of the electromagnet coil
L :inductance of the electromagnet coil

State Equation
Substituting (3), (7) and (8) into (4), we
obtain

z, 0 I 0 z,
[z = |4+B,c,0, A,P, B,C, z]
i 0 o (-r/D)I|l¢
0 0
+| 0 |e+ |4,4B,C,0 |w (9)
(1/D)I 0 '
(cf.appendix). Applying the coordinate
transformation
g9, = Ciz, (10)
to the system (9) leads to
0 I 0
¢ = |Cy(A,+B,C,C,)C* C,A,P,C7! C,B,C, | =
0 0 (=R/D)I
0 0
+| 0 |e+ |Ci(A1+B,C5C) | wy. (11)
(1/L)L. 0

Since variables g¢,,i can be measured, the out-
put equation is given as follows.

Iooflg, Cho
y=10 1 0||g,|+ |[CoP,| w (12)
oo Ijls 0

These equations show that sinusoidal distur-
bances w, due to (caused by ) the unbalance of
the rotor affect the system dynamics and meas-
ured outputs. These disturbances can be
described as the output of the autonomous sys-
tem, :

0-p0 O
. ecor
- P p 000 ssilf::
=Y =19 0 0 —p| ¥ w(0) = TcosA | (13)
00 p o 7sinA

3. Problem Statement

The system is described as the following
equations.

z = A(p)z+Bu+Ew (14)
W= Py(p)w, (15)
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(16)
(17)

where z is the state variable, » is the control
input,

w is the disturbance, y is the measured output,
and - is the controlled output. Matrices
A(p),P:(p),Co(p) have terms which increase in pro-
portion to the angular velocity p. Our objective
is to construct a controller which preserve inter-
nal stability and reject the disturbances ( z(1)—0
as t—0 ) at any rotational speed in the presence
of uncertain initial conditions. To solve this
problem, we introduce so-called " output regula-
tor with internal stability " theory [1].

y = Ciz+Cyp)w

z= Dz

4. Design of Control System

Output Regulator with Internal Stability

The control system has the feedback confi-
guration and the feedforward configuration.
The control input is given by

(18)
The feedback input K,z provides an internal sta-
bility and the feedforward input K,w provides an
output regulation. Design procedure of this
control law is composed of following three steps
[2].

<stepl>The system is stabilized by the state
feedback. <step2>A feedforward input which
cancels

the influence from the disturbance to the state
to be controlled is computed. <step3>An
observer is introduced to estimate unmeasurable
state variables and disturbances. Then zw in
(18) are replaced by output of the observer.

u = Kjz+Kyw .

(19)

u = K 2+ K0

Implementation

We construct a controller according to
above-mentioned procedure. <stepl>At any
rotational speed the system (14) is stabilized by
using the quadratic stabilization technique.
This technique is effective to the variation due
to gyroscopic effect.

A(p)+K,B is stable.
<step2> The feedforward input to achieve a

asymptotic disturbance rejection at any rota-

tional speed is computed as follows.

The eigenvalue of P(p) and the eigenvector

corresponding to each eigenvalue are computed.
’\1=’\3=jp ’ ’\2=’\4=_jp ’

-1 1 0 0
] -7 0 0

t1= é ’ t2= 0] ) t3= 1 ’ t4= 1 .
0 0 i =]

For each )¢ , let (£, ¢) be a pair of vectors satis-

fying
rI-a gllr] |E v
D, o} g;] - [ol}"' (20)
Let
K,=-UT" .
where

U'—‘[!h 92 93 94]

Calculating k, for the variation of the rotational
speed, let k, be a function of . Resulting feed-
forward gain matrix K, makes the transfer func-
tion from w(0) to = zero.

T(s,p) = Di{sI~(A(p)+BK)} (E+BE)(sI-Py(p))™  (21)

=0

Minimal Order Observer

<step3> In this system, a part of the state
variables of the system and the disturbances to
the system can’t be measured. Therefore, we
employ a minimal oder observer to estimate
these variables. The observer is designed for
the following augmented system.

[:’] ) [Af’p) Pﬁlp) m + g u=Ap)z+Bu (22)
y = [Cl CZ(P)] 1:1 .= C.(p)z. (23)
Observability of the pair (CJ(p), 4.(p)) 1S

guaranteed except for the case p=0. Hence, we
restrict the rotational speed within a reasonable
range. The minimal order observer is given,
¢ = A(p)E+K (p)y , - (24)
2, = D(p)E+H(p)y , (25)

where
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Fig.4 Internal model of sinusoidal disturbances

A(p) = Py(p)~LEy(p) ,
K,(p) = A(p)L~LA(p) , B=-LB =0

c, I+C.\L
C,P(p I+C,P,(p)L
D(p) = | 01( ) , H(p) = |™ 1141( ) )
I L L

The observer is determined by specifying the
observer gain matrix 1 . In specifying r , we use
the turn over method to stabilize the observer
at any rotational speed ( except for p=o ).
A(p) is stable.

In this case, the resultant observer has an inter-
nal model of the disturbances as shown in Fig.
4. With the output of the above-designed
observer, the control input is given as

u = K% + Ky(p)i (26)

From (24),(25) and (26) such synthesis is
achieved by the dynamical output feedback con-
figuration.

5. Property of Composite System

We show that the proposed control system
(24),(25) and (26) indeed preserves the internal
stability and rejects the disturbances. Arrange-
ment of (14),(24),(25) and (26) gives the follow-
ing composite system. .

T

H _ ‘[A(P)+BK1 "BK102(P)+BK2(1J)6'1}

P 0 A(p) e
E,+BK,(p)
+ 0 ? } w (27)
w = Py(p)w (28)

where ¢ is an error vector .of the observer. If
w, =0 in (27), the composite system is asymp-
totically stable since A(p)+Bk, and A(p) are
stable at any rotational speed.

Laplace transforms of (17),(27) and (28) lead
the following equation. :

4(s) = D, X(s)
= Dl{.sI—(A+BK1)}‘lz(O)
+D,{sI-(A+BK))} "~ BK,C,+BK,(p))(sI-4)e(0)
+Dy{sI-(A+BKy)} (E\+BKy(p))(sI- P,) " w(0)
(29)

where z(0),¢(0) ,w(0) express the initial value of
each variable. Since A(y)+BK, and A(p) are
stable at any rotational speed, the first term
and the second term of right side asymptotically
approach to zero. Moreover, the third term is
zero ( see <step2> ). Hence,

z(oo) =0

.,

Therefore, effectiveness of the proposed con-
troller is confirmed.

6. Numerical Example

Above-developed control scheme is applied
for 4-axis active control type magnetic bearing
system. Parameters of this system are given in
Table 1,2. The system behavior is discussed for
the variation of the rotational speed from Orpm
te 10000rpm. .
<stepl> The system 1is stabilized within

10000rpm by the quadratic  stabilization
method. Then,
1.635¢5 —9.4742 0 06.752¢2 —5.29
—9.474e2  1.635¢5 0 0 —5296.752e3
K, = 0 0 6.735e4 —6.526¢2 0 o™
0 0 —6.526¢2 6.735¢4 0 0
0. 0 —1.42¢29.953e—1 - 0 0
0 09.953e—1 —1.42¢2 0 0
* 4.474e2 —7.805 0 0—8945¢1  1.152
—7.805 4.474¢2 0 0  1.152 —8.945¢l
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Table 1 Parameters of rotor

item letter value unit

Mass of rotor m 1.39x10" kg
Moment of inertia about X, J, 1.348x1072 | kg -m?
Moment of inertia about Y, J, 2.326x107" | kg -m?

Length (k) 1.3x107} m

200

100

-100

—200

Table 2 Parameter of electromagnet

item letter value unit
attractive force | Fy 9.09x 10 N
Fp, 2.20x10 N
Fy 2.20x10 N
Fu 2.20x 10 N
Fy 9.09x 10 N
F, 2.20x10 N
Fgq 2.20x10 N
Fy 2.20x10 N
coil current Iy 6.3x107" A
In 3.1x107t A
Iy 3.1x107! A
Ly 3.1x107! A
I, 6.3x107 A
I, 3.1x107! A
Is 3.1x107! A
I, 3.1x107! A
gap length w 5.5x107 m
Resistance of coil R 1.47x10 n
Inductance of coil L 2.85x107} H
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Fig.5 Root locus of closed loop system
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Fig.6 Root locus of observer

Fig. 5 shows the root locus of closed-loop system for the
change of the rotational speed. Obviously, closed-loop
system is stable at any rotational speed. <step2>
Computation result of the feedforward gain is as fol-
lows.

[2.718e2xp  1.504e5  —1.93¢4 3.535elxp
2.718e2Xp 1.485e5  1.955e4 —3.535¢lxp
KLp)=| _520e4 1.606e2xp —2.089elXp —8.476€3
| —5.22¢4 1.606e2xp 2089elxp  8.476e3
[ 027182 3.535¢l olfo =p 0 o]
0 2.718e2 —3.535¢1 ofl[p 0 0 0
= |-1.606e2 0 0-2.089l1|]0 0 0 —p
-1.606e2 0 0 20891flo 0 p o0
0 1.504¢5 —1.93e4 0]
01.485e5 1.955¢4 0
+ [—5.22e4 0 0 —8.476¢3
—5.22¢4 0 0 8.476e3 |

The gain matrix K,(p) has elements which are in propor-
tion to the rotational speed.

<step3> Fig. 6 shows the root locus of the observer
corresponding to the change of the rotational speed.

The observer is stabilized at 10000rpm. In this case,
poles of P is turned over against the axis Rex=—5. It
can be seen that the system is stable except for p=0.

7. Conclusion

The modeling of a magnetic bearing system
to achieve the rotation around its axis of inertia
was developed. Then, based on the state-space
approach, we proposed an effective control

scheme for this problem. This problem was
solved by using output regulator with internal
stability theory. Constructing the dynamical
output feedback controller, it has been shown
that the unbalance compensation was achieved
in a wide range of rotational speed.
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afm 0 0 —al,/m
0 a/m al,/m 0
= 0 aly/J, e/, 0 '
|—aln/T, 0 0 al/J,
00 o0 0 0-p0 0
00 O 0 p 0 00
“loo /g, o0 ’P1=000—p'
00 0 JJ/J, 000
0 0 1/m 1/m
-1/m -1/m 0 0
V5w, =1/, 0 0o |
0 0 u/Jd, —ilJ,

0 1-4 0
011 0
Gi=1_10 0 -
10 0 I

c, = ——;—,diag[ Fy+Fp, FytFoy, FutFiy, FgtFoy ]

F, rl
I,

Fy

Fo Fy Fy
+— ) (—+—),
I, ) Iy I a

Fré) :l
+—
Ira Ir4

C3 = 2diag

Fy Fp
_+_ ,
( I Izz) (
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