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Abstract

The successful design of actively controlled magnetic bearings depends greatly on the design of the contrql system. The
function of the controller is to maintain bearing performance in the face of large system dynamic variations and unpredictable
disturbances. This paper discusses issues associated with the design and implementation of a digital time delay controller for

active magnetic bearings.

The control system evaluation conducted in this research consists of several tests. Various components of the system
are identified and their corresponding theoretical models are then validated experimentally. The effectiveness of the digital
control algorithm was then validated using several simulations which are based on linear and nonlinear models for the bearing
including bending mode effects. Several experiments were conducted for spinning and nonspinning conditions. These include
time responses, closed loop frequency responses and disturbance rejection frequency response data. Evaluations were performed
at bearing rotational speeds of 10,900 rpm, 20,100 rpm, 30,400 rpm and 34,800 rpm with Time Delay Controller bandwidths of
100, 200 and 400 rad/sec. The digital controller presented shows an extremely high performance for the prototype considered
by maintaining almost the same desirable dynamic behavior over the whole range of speeds.

1 Introduction

The use of magnetic bearings to support rotating structures without
contact has received considerable attention in the last forty years.
There are two main areas of advantages of using magnetic bearings
over conventional bearings. The first is due to their contactless nature
which eliminates friction which is inherent in conventional bearings.
The absence of friction in magnetic bearings not only contribute to ef-
ficiency in energy but also to longer life and elimination of mechanical
maintenance of the bearing. The contactless nature also eliminates
the use of lubrication in the bearing. Lubrication poses problems
because its presence precludes operation in many environments. Ab-
sence of lubrication in magnetic bearing makes them compatible to
environments such as vacuum and other hostile environments. An-
other advantage is that the magnetic bearings can operate in a wide
range of temperature ranging from —250°C to 450°C [20].
The other advantages are due to the closed loop control of the
bearing such as the elimination of vibrations due to unbalance [20].
The characteristics of active magnetic bearings are inherently non-
linear due to the nonlinearities of electromagnetic fields. The nonlin-
ear nature requires an increase in the modeling complexity, estimation
and control of the bearings. Furthermore there exist unpredictable
disturbances due to mass unbalances of the rotor, and uncertainty of
the model due to changes of the rotor speed. For many applications,
the systems are assumed to be linear with no parameter uncertainties.
The linear controllers are then designed based on the linearized time
invariant model. Additional background and historical review can be
found in [16].

The most recent controller design approaches use full-state feed-
back. Hubbard and McDonald [5] used linear-quadratic design in
their pendulous supported flywheel. Stanway and O’Reilly [9] used
eigenstructure assignment for the control of suspension systems for
rotating machinery. Salm and Schwietzer [7] demonstrated modal
control of a flexible rotor. These approaches use linear controllers for
linearized models, and therefore ignore all model uncertainties and
unexpected disturbances. Additional references are found in [16].

Most of the well-developed control theory, either in the frequency
domain or in the time domain, deals with systems whose mathemati-

cal representations are completely known. However, in many practical
situations, the parameters of the system are either poorly known or
operate in environments where unpredictable large parameter varia-
tions and unexpected disturbances exist. In such applications, the
usual fixed-gain linear controllers will not be adequate to achieve sat-
isfactory performance in the entire range over which the characteris-
tics of the system may vary.

Recently several advanced control techniques have been developed
for such systems. One of the primary method is Adaptive Control
[1,3,6,10} where the structure of the controller, usually a PD or PID
type controller is first selected. The controller gains are then updated
so that the plant output closely follows the desired response [2,4]. This
method considers slowly varying plant parameters, linear equations
and/or bounded uncertainty.

Variable Structure Control (VSC) is another very powerful method
to deal with nonlinear systems with uncertain dynamics. VSC was
first proposed by Utkin in 1972 [11], and its early application was
made by Young in 1978 [18] to robot manipulators. Based on Lya-
punov’s second method, this control scheme is characterized by a
discontinuous function with high frequency chattering, which forces
the system to follow the reference signal quickly without the param-
eter identification process used in adaptive control. This infinite fre-
quency chattering, however, is undesirable in many practical applica-
tions such as mechanical systems. Young proposed a linear region to
eliminate chattering [19]. In 1983, Slotine and Sastry [8] proposed a
modified VSC method to eliminate chattering by introducing a slid-
ing zone. If the uncertainty is large, the sliding zone must be wide
enough to cover the uncertainty. In this case the controller tends to
be a regular PID controller for the operating range, thus losing the
advantages of the VSC approach. That is, SMC is useful only for
systems where the plant parameter variations and disturbances are
bounded and small.

Learning control is another approach which is based on trial and
error. Arimoto and Miyazaki extended it to Multi-Input Multi-Output
nonlinear systems. In Learning Control, the generated tracking errors
are stored during every iteration. After each iteration, the controller
adds a signal, which is proportional to the stored error and/or its
derivative, to the previous control input such that the tracking er-



ror will decrease during the next iteration. By repeating this process
several times, betterment in performance is obtained. Therefore this
approach is restricted to repetitive tasks only.

In 1986, Youcef-Toumi and Ito proposed a novel method, called
Time Delay Control (TDC), which is applicable to rionlinear plants
with unknown dynamics and unexpected disturbances [12,13,14). TDC
law depends on neither estimation of specific parameters or repetitive
actions, nor does it generate a discontinuous signal. Rather, it de-
pends on the direct estimation of the effect of uncertainties. This is
accomplished using time delay. The gathered information is used to
cancel the unknown dynamics and the unexpected disturbances si-
multaneously. Then the controller inserts the desired dynamics into
the plant. In other words, the TDC uses past observation of the sys-
tem’s response and the control inputs to modify the control actions
directly rather than adjusting the controller gains. Thus this algo-
rithm can. deal with large unpredictable system parameter variations
and disturbances.

In this paper, we first present models of an eight pole attractive
magnetic bearing as used in a High Speed turbo molecular pump.
The Time Delay Controller for magnetic bearings is briefly presented
in Section 3. Section 4 deals with the implementation and evaluation
of the Time Delay Controller.

2 System Identification and Model Vali-
dation

In this section, the system parameters are identified and the models
are experimentally validated. The nonlinear and linearized equations
of motion for the bearings are also presented. The theoretical and
experimental frequency responses of the system are also presented.

2.1 Plant Dynamics

The dynamic behavior of a rotor under the action of an eight pole
attractive magnetic bearing in the radial direction can be modelled
by the following equation:
d*z
md—tz—=—f¢+fr +d (1)
where m is half of the rotor mass (kg) (since the rotor is controlled
by two radial bearings) and the left and right magnet forces (N) are

given by
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o is the permeability of free space and Ay is the air gaf; area of one
pole. N is the pumber of turns. The left and right bearing clearances
he and hr respectively are

hy=ho+zand hy =ho—2 3)

ho is the nominal bearing radial clearance and is the deviation of
the shaft from the bearing center. d is a disturbance force.

A schematic of the radial bearing is shown in Figure 1. The vari-
able u indicates the control signal. Using Eqn. (2) and Eqn. (3) and
introducing a bias current Io, Eqn. (1) becomes

d?z K(Io —05u)? K(Io+05u?  d
e Klo— 0y | FOt WL @
dt m(ho + ) m(ho — ) m

At steady state, the current in the left and right electromagnets is
I, therefore u = 0, z = 0, and # = 0. Thus the linearized model
becomes:
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where z1 and z are the position and velocity. The transfer function
of the actuator and plant can be given by the following expression:
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The system parameters are summarized in Table 1.

The bending modes were included in the plant equation to evalu-
ate their effect on the control performance. The first bending mode of

the plant can be modelied as a second order single degree of freedom
system. Figure 2 shows a single degree of freedom system, where the

. massless dashpot of damping coefficient D and a spring of stiffness k

are mounted between the mass m and the fixed wall. The transfer
function between the displacement and the force F can be written

18- (1) ()

where w2 is equal to K/M, and ¢ is equal to D/?V‘MzK. Since there
are more than one bending mode of the rotor, the mass m of the
rotor has to be distributed among these modes. Therefore the mass
for the first bending mode can be thought of as the effective mass for
the first bending mode. The value of stiffness K is very high and the
damping D is very low for metals. Therefore the damping ratio ¢ of
the bending mode is small. The effective mass of the bending mode
has to be less than the actual mass of the rotor.

The system was modelled such that the perturbations caused by
the input force due to the bending mode was then added to the posi-
tion of the rigid plant affected by the same force. The block diagram
of the modelled system is presented in Figure 3

2.2 System Identification and Model Validation of
an Eight Pole Magnetic Bearing

The turbo molecular pump has two radial bearings and a thrust bear-
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Figure 1: The Control Current Setup for the Bearing in the Radial
Direction
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Table 1: System Parameters
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ing. Each radial bearing has two degrees of freedom in the horizontal
plane and the thrust bearing has one degree of freedom in the vertical
plane. It is assumed that the bearing forces are uncoupled in the five
axes (X1,¥1,X2,¥2, and z). The controller is similar to a regulator
where the system output follows a desired position indicated by the
reference input.

Several frequency responses were obtained for comparison with
theoretical models. These frequency responses were obtained for both
the thrust and the radial bearings. A HP dynamic signal analyzer
was used to send a swept sine signal with a frequency range of .1 Hz
to 10 kHz. The experimental transfer function is between the output
position measured in terms of voltage and the input current measured
in terms of voltage. The sensor gain for the radial bearing is 25000
V/m. The analytical transfer function obtained is:

Xi{s) 10472 12.88 x 25000 [V
U(s)  (s+15700) s — 37100 (V) ™
The plant is an unstable plant with two poles at +192.6 rad/sec
(30.7 Hz) and -192.6 rad/sec (-30.7 Hz). The experimental plant
frequency response is presented in Figure 4. The break frequency of
the experimeéntal plant transfer function is 21.8 Hz. The theoretical
break frequency is very close to the experimental break frequency.
The estimated experimental transfer function is

Xi(s) _ 9x 25000 10472
U(s) _ 52— 24670 s+ 15700

The experimental frequency response portray the bending mode char-
acteristics of the rotor. The bending mode affects the gain at about
900Hz and at about 2 kHz. The phase response of the plant also
shows the effect of the bending mode of the plant.

3 Time Delay Control

This section deals with the Time Delay Controller for magnetic bear-
ings. This controller estimates a feedforward action in order to cancel
the unknown dynamics and disturbances present in the system and
introduce some desired dynamics. This method is discussed in detail
[x7].

The nonlinear equations of motion for a given axis of the Active
Magnetic Bearing can be written as,

dzy -

— =2

dt ®)
dIz .
T g(z1,u) +d(t)

where g(zl,u) is a nonlinear function relating &2 to z1, and u;
and d(t) is the disturbance force. Time Delay Control law assumes.
that both the function g and disturbance scheme are unknown. The
control as discussed in [17] assumes a reference model which generates
the desired trajectory. A second order reference model is chosen as

dzim, z
= T2m
dt 9)
d?;m = —a1mT1m — G2mTam + bmT

The values for aim and @z, are chosen as to satisfy the require-
ment of the natural frequency, and damping ratio of the second order
reference model. The TDC control law derived in the previous sec-
tion was chosen to satisfy this requirement and therefore given by the
equation:

u(t) = Ll—#a(t — 1)+ bu(t — 1) — a1mz1(?)

(10)
—aam(t)a(t) 4 bmr + k1e1 + kze2]

where &, is an estimate of the acceleration of the rotor, z is the
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Figure 3: Block Diagram of the Plant including the First Bending
Mode

40 .07 TTITTT T rTTTRA T T Toooran
RS RENIL o o riam
bt [N [ [ RN
L . 88,0 TrTre-augp 1Y Lt NN

10.0 RN e 1 ocT RN
Lo [BRRRELL \:I |::|I:::
"or " e | ' '

V- PO S I Y . i
BRI P R [
e e [ [
[N ENTT] e [ [N
T T T T T TrTrT T A N hi
ot [ ENNETT o
ot e [

a8 raainn RN P N
T i T (]
(R e e
G oy [N
S W R VI R P [Sy )
Vo R ro
i v [BEEE]
o o [
A L L1 R B N N L I I R}
o Voo [
Lo o [
Lo R [
<V T AT o [
BRI oo [
—40.0 s oo o
| W—— O e oL
100m Log Hz PLANT

Q.0 TUvrTTT T
e rinm '

(B ERTIT '
4Ly !
RN i

48.0 e '
e '

/D31v SRR TTY1 S 4
BEREET '

oo '
e '
F—r 1t e = .
[ RN '
. e '
Phase (RN [
DL .
(RN '
[ ERNIT .
DOeg I R R W U YT '
RN
(BRI .
ot '
et Frrnin .
e
oot '
| |||l|||‘ '
[ iinm '
) L )
- 350. ' |||-|u! . e
Lt vl [
100m og Hz PLANT T.F.

Figure 4: Experimental Frequency Response of the Plant Transfer
Function (x; axes)

velocity of the rotor, and z; is the position of the rotor, e; = z1, — 21,
and ey = Z5,,, — 3. The error gains k; and k; are appropriately cho-
sen. While this control law requires an estimate of the acceleration,
a new method has been developed in [17] which does not need such
signals.

17—




4 Controller Implementation and Evalu-
ation

4.1 Simulation Results

The Time Delay Controller law for the radial bearing was designed
under the assumption that the rotor was rigid. The rotor has the
first bending mode at frequencies between 800 Hz and 1000 Hz and
the second bending mode between 9 kHz and 2.5 kHz. The bending
mode natural frequencies were experimentally determined by using an
impulse hammer, accelerometer and a signal analyzer. The damping
ratio and the effective mass were estimated based on the theory of
vibrations discussed in [16]. In the following simulations, b = 100 ,
aim = 4.0 X 104 , and ap;, = 282.8 were selected for controlling the
thrust bearing (z-axis). b = 100, a1m = 4.0% 10% and az, = 400 were
used in the case for the radial bearing.

4.1.1 Rigid Model

Simulations were performed for the radial bearing under Time Delay
Control with the assumption that the rotor was a rigid body. Figures
5 a, b and ¢ contain the position, the position error, and the control
current responses for the radial bearing controller. The specifications
for the simulations are as follows: second order reference model with
a bandwidth of 200 rad/sec, damping ratio of 1, sampling rate T}
of 4 KHz. The time response of the above mentioned second order
reference model should have no overshoot and a settling time of .02
sec. The system time response in Figure 5 behaves as that of a second
order system as expected. The settling time of .025 sec obtained from
Figure 5 a for the simulation is very close to the expected value of
02 sec. The time response has very negligible or no overshoot as
expected. The control current increases in magnitude from 0 A to a
maximum value of -0.44 A and then decreases to settle at a steady
state value of about -0.01 A.”

' 4.1.2 Flexible Model

The simulations were performed for the case where the closed loop
bandwidth of the Time Delay Controller was 200 rad/sec. Figures
6 a, b and ¢ contain the time response, the position error, and the
control current of the rotor for the xo axis. The specifications for
the simulations are as follows: second order reference model with a
bandwidth of 200 rad/sec, damping ratio of 1, sampling rate of 4 kHz.
The effective mass m; s of the bending mode was 5 kg, the damping
ratio was .001, and the natural frequency is 875 Hz. The total rotor
mass is 2.2 kg. The time response presented in Figure 6 a looks like
the response of a second order system with a settling time of .03 sec
and an overshoot of 5%. The time response of the rigid body without
the bending mode for the same specifications was similar except that
it had a negligible overshoot. The control current of the system does
not show any significant change from the rigid body mode. Therefore
for the bending mode with the above mentioned specification does
not affect the system time response significantly.

4.2 Experimental Implementation and Results
4.2.1 Implementation of the Time Delay Controller

A detailed block diagram of the system is presented in Figure 7. In
this experimental setup, we have the option of controlling the system
using either a linear analog controller which resides in the compen-
sation block, or a time delay controller implemented digitally in the
DSP board.

The position signal for the Time Delay controller is obtained
through the test points TP2 and/or TP3 and this signal is then sent
into an analog to digital converter (A/D converter) which is linked to
the DSP board. The A/D board has an adjustable built in low pass
filter where the position signal can be filtered. The control voltage

signal is sent out through the D/A converter which has a low pass
filter with adjustable cutoff frequency. A switch for implementing the
Time Delay Controller was installed in the control board. The system
can be switched either to analog or digital from this switch.

4.2.2 Experimental Results

The Time Delay Controller was evaluated for its closed loop responses,
disturbance rejection properties, and time responses for both the
thrust (z axis) and the radial (x2 axis) bearing. The closed loop
and disturbance rejection properties of the radial bearing were also
analyzed while the rotor was spinning at speeds of 10,900 rpm, 20,100
rpm, 30,400 rpm, and 34,800 rpm.

The model reference for the thrust bearing was chosen to have a
natural frequency of 200 rad/sec and a damping ratio of .707. The ex-
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Figure 5: Simulated Rigid Body Model for z, Axis. Reference Model:

w, = 200 rad/sec, { =1, Ts = 4 KHz.
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perimental data shown in Figure 8 indicate that the actual response
tracks the reference model response very closely. In this case, the
position moves from 200um to Opm which corresponds to the sus-
pended configuration. The error is shown in the same figure and has
about less than 10% maximum error. The control current necessary
to produce this response is also shown in that same figure with a
maximum current of about 1.75 amps. This is an excellent perfor-
mance considering that the controller has no detailled information
about the system. Figure 9 shows the closed-loop frequency response
of the thrust bearing. In this case it is clear that the magnitude and
phase characteristics are very close to those of the reference model
selected. The disturbance rejection properties of the thrust bearing
are shown in Figure 10. The controller rejects disturbances up to the
bandwidth which is again around 200 rad/sec. The static stiffness is
about 100 MN/m and the minimum stiffness is about 300 KN/m at
the frequency of 200 rad/sec.

Figure 11 shows the closed loop frequency response for a radial
bearing. This is very similar to that of the reference model. Fig-
ures 12 shows the disturbance rejection of the radial bearing when
the rotor is at rest and while it is spinning at speeds of 10,900 rpm,
20,100 rpm,.30,400 rpm and 34,800 rpm. When the rotor is at rest
the stator stiffness is about 200 MN/M and the minimum stiffness
is about 500 kN/m at 100 Hz. It is clear that the disturbance re-
jection properties are almost the same for these different operating
conditions. The peaks 800 Hz and 2.2 kHz correspond to the first
two bending modes of the rotor. The peaks corresponding to the first
bending mode are much more significant when the rotor is spinning
at 34,800 rpm. Figure 13 shows the disturbance rejection when the
rotor is at rest for reference model bandwidths of 100 and 200 rad/sec.
The improvement in disturbance rejection properties with increase in
reference model bandwidth is evident in this figure.

5 Conclusions .

This paper has presented simple model for active magnetic bearings.
The key point of the paper was the implementation of the Time Delay
Control to such systems. The effectiveness of the digital control algo-
rithm was first validated using several simulations which are based on
linear and nonlinear models for the bearing including bending mode
effects. Several experiments were conducted for spinning and nonspin-
ning conditions. These include time responses, closed loop frequency
responses and disturbance rejection responses. Evaluations were per-
formed at bearing rotational speeds of 10,900 rpm, 20,100 rpm, 30,400
rpm and 34,800 rpm with Time Delay Controller bandwidths of 100
and 200 rad/sec. The digital controller presented shows an extremely
high performance for the prototype considered by maintaining almost
the same desirable dynamic behavior over the whole range of speeds.
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Figure 11: Closed Loop Frequency Response of Radial Bearing






