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Abstract This paper proposes the application expansion of frequency shaped regulator
to the vibration control of the flexible rotor supported by magnetic bearings. The dynamics of
the flexible rotor is modeled as axi-symmetric slender shaft with FEM. The design method of
the regulator containing the second order pre-filter of low-pass property is described applying
the plant model of the flexible rotor and the radial magnetic bearings. The practical aspect of
designing is examined for a flexible slender rotor of total length 520mm. The regulator derived

from the rotor model containing only two rigid-body modes proves effective for the vibration
control of the rotor. The influence of the sampling rate of the controller and of the cut-off
frequency of the filter are examined by the use of computer. simulation.

1. INTRODUCTION

The use of magnetic suspension is increasing in its var-
ious forms with its proven high level of reliability, neg-
ligible maintenance and low energy consumption. The
benefits come from the non-contact support which results
in negligibly small friction and low vibration level of the
supported body. Its use spreads from the high speed rail
way vehicle to the rotational machinery. One of the most
attractive advantages of the magnetic suspension is the
applicability to the. vibration control of the flexible sus-
pended structure. The control system concerned with
maintaining a floating gap is also applied to the vibra-
tion suppression. Modern machinery is apt to decrease
of its weight and accordingly the stiffness. On the other
hand the moving speed of the machinery consistently in-
creases. These trends often result in the increase of the
control band-width and the decrease of the natural fre-
quency of the structure. Incidentally we are forced to
solve the problem of the resonance between the structure
and the control system.

In order to support a flexible rotor statbly by mag-
netic bearing, the suppressing of higher mode vibration
else than two rigid-body mode is needed, although only
four pairs of actuators are installed in magnetic suspen-
sion systems. This is a typical problem of spill-over avoid-
ance in flexible structure. Direct feedback control?) where

colocated sensor signals are fed-back to actuators have

- been utilized. In a magnetic suspension system direct

position feedback causes the positive spring and direct
velocity feedback causes the damping effect. The design
method. of control sysiems concerns with assignment of
the velocity feedback gains to the flexible vibration mode.
The utilization of the pseudo inverse was proposed to de-
termine the gain matrix to the excessive degrees of the
mode??),

A flexible rotor has other problems, the first of which is
the variation of the natural frequencies with the rotational
speed and the second of which is the estimation errors
of those. One of reasonable and practical means to cope
with the problems is the utilization of the controller which
has low-pass property. Recently the design method of the
frequency shaped optimal regulator was developed*®) and
its application to flexible space structures was proposed®,
The authors propose the expansion of its application to
the flexible rotor suspended by magnetic bearing. The
optimal regulator is designed to stabilize the two rigid-
body modes which have the natural frequencies of null and
its accurate mass property. For suppressing the flexible
mode whirl which is not modeled at designing, the low-
pass property of the the regulator is made use of.

In section 2 the modelling of the magnetic bearing and
flexible rotor is described. The non-rotational model of
the rotor is supposed. But we treat four-axis control type
magnetic bearing as the model. Finite Element Method
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(FEM) is adopted to represent the dynamics of the flexible
rotor for its broad applicability. In section 3 the design
method of the regulator is described, where multi-input
multi-output control systems are supposed. In section 4
the practical aspect of the designing are designed; cut-
off frequency in the filter and sampling rate in the digital
controller. These are examined with computer simulation.
The adequacy of the conroller designing is approved.

2. MODELLING

As mentioned above a 4-axis control type magnetic bear-
ing is supposed in the paper. A schematical cross sec-
tional view of the radical magnetic bearing is shown in
Fig.1. One axis contorol magnet comprises a pair of coil-
sand iron cores. The rotor center is displaced at ¢ from
its equilibrium position. The gaps in the left pole and the
right pole are & and ¢, respectivel. The atractive forces

1,f+ generated in both sides are represented respectively
by the currents 7;,i, and the gaps as follows,

fi = 05k(in/&)?, fro= 05k(i, /&) (1)

ki = "2—°NA : (2)

where po is the magnetic permeability of free space , N
the turn number in the coil and A the surface area in the
pole. The common coefficient kj, is assumed between both
electro-magnets . As the gaps at the equilibrium posi-
tion are common such as § = &, = &, the non-equilibrium
gaps & and ¢, are represented as follows,

& = éotz, & = bz 3)
Then the currents in both gaps are assumed as in the
following equations.

i = io+<z, iy = ig—¢ (4)

where 4o is the common bias current between both coils.
The currents are meaningful only when they are positive.
The resultant force F composed of f; and f, are deduced
as follows,

- _ _ ko fio+i)?
F=-h+h=-Flagy) *

by (=iy?
2 \fo—x/ (5)

The coil currents i,i, are governed with the input voltages
1,y across the coil by the following relations

Kdvl = ('iz - io)Rd + %(inl) (6)
Kyv, = (11' - iO)Rcr + %(err)

J|Di_<7ital Controller

Fig.1 Cross sectional view of radial magnetic
bearing

where
Ly = k/&, L, = ki/¢ (7

and, K and K., are the voltage gains in the power ampli-
fiers, Ry and R, the resistances in both side coils. When
the common voltage gains in the power amplifiers and the
common resistances in the coils are assumed as,

I{C = Kd = Kcr (8)
R. = Ry = R, (9)

Equation(6) is approximated as in the following, after the
linearized expansion of ¢, &, 1; and 4; around their equi-
librium conditions are introduced.

K = R +%i- 44
0 13
Ko, =

_n; _kp: krto -
R.i et + (12
As vy and v, are correlated with each other, single variable
v represents both variables as follows,

(10)

U=y = —v, (11)

when the coil current lag time, To = ki/éR. is suffi-
ciently short compared with the other dynamical charac-
teristic time, we can simplify Eq.(10) as follows,

i = (Kc/R)v+ (kLi/Rc)E (12)
where kp; is defined as follows,

ki = kr(io/&?) (13)

The resultant force F can be approximated by using the
similar linearization as follows,

F = —2kpii+ 2kp,z (14)
where kr, is defined as follows,

ke = kr(io®/&°%) (15)

The bending motion of a flexible rotor is described by
utilizing FEM. An axi-symmetric rotor is devided into n
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components. The center point of i-th component is on
P(zi,y;) as shown in Fig.2. We assume that Y; is time-
invariant. z; means the radial displacement and it is Iep-
resented as follows,

Ti = T+ yif 4 wy; '(16)

where z, is the displacement of the center of the gravity
of the rotor, 6 is the tilting angle of the rigid body mode,
and w; is defined as follows,

v = [zt:)e: W1, Wy, - - ';wn]T

(m)

The equation of the rotor motion is represented by the
following,

Mi+ Kw = B'y (18)

where M and K are the Mass matrix and the stiffness
matrix respectively. We should note that the dynamics
of rotation is not considered in thig Paper. f is the force
vector composed of the magnetic forces f,, f; at the upper
bearing and the lower bearing respectively , as shown in
the following equation.

f=[1fuh” (19)
Then, matrix B' is Tepresented as follows,
(1) (@)
|1 oy, e 1 0 ... f
B" = 1y - 0 1 ] (20)
X

Fig.2 FEM model of flexible rotor
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where y, and Y% mean the y coordinate of the upper beas-
ing and the lower bearing respectively, and they are on Ty
component and on i, component respectively. We transfer
variable w to ¢ with transfer matrix P as follows,

w = Pq

(21)
Then Eq.(18) is transferred to the decoupled equation as
follows,

¢+1Lg = Bf (22)
L = diag.(0,0,0,u3, ..., u2) 23 |
B, = PTBI ( )

Eq.(22) is applied to the computer simulatjon Ieserving
the non-linearity in f, and Ji tepresented by Eq.(5). But
for designing the controller the linearly approxim ated equa-
tions, Eq.(12) and Eq.(14), are introduced. Then, Eq.(22)
is transformed to the standard equation of the state re-
taining m flexible mode variables as follows,

£ = Az + By
z is the state variable redefined as follows, 1
|
- N ‘T
T = [zc,eyqu”':Qm)xc’eyql;""qm]

u is the input variable composed of the input voltages of
the power amplifiers as follows,

@
|

U = vy, )7 (26) j
Matrix A and B are rearranged as follows, f
Om : I,
A = (27)
A P4 ;
A1 = Lm + 2k, ®BT
A2 = (-2k};/R.)%B,,, |
Py P, P,
@T = u u2, 'y Lum
[ 1311 JJIZ) )-le ] (28) [
\
0 ‘
2k K, !
B = _%_ (29) ‘H
c Blm |

center of iy-th component and 1;-th component, as the i

colocation of the sensors and the actuators are assumed.
The output equation is represented as follows,



y = Ctg (30)

c=[gr t o (31)

3. CONTROL BY THE OPTIMAL
REGULATOR

Imagine that the equilibrium of the flexible rotor suspen-
sion breaks down by some disturbance. Optimal regula-
tor is utilized as the controller to restore the equilibrium
and to maintain the stability of rotor suspension. When
a plant model is represented by Eqs.(24) and (30), the
following performance index J made up of an integral of
quadrant forms is introduced.

J =/ [zTCTCz+uTRTRu]dt (32)
0

On designing the conventional regulator R is time- invari-
ant matrix independent upon angular frequency. The sys-
tem input u is determined as u = —kz so that the index
J may be minimized. As R decreases, the higher gain and
the frequency band-width pertains the controller. But if
the model becomes obscure especially at high frequency
range, the control system tends to unstable. For flexible
rotor suspension systems some mode frequencies increase
with the rotational speed. In order to preserve the robust-
ness of the controller from the high-frequency uncertainty
in the system model, we apply the optimal regulator reult-
ing from frequency-shaped weight matrix. Equation (32)
is transformed by using Perseval’s theorem as {follows,
1

7= =7 estiol + RG] d @9

While C is assumed as time-invariant in the paper, R is
treated as frequency-dependent as follows,

R\(iw) = {Tﬁl(“") 0 } (34)

0 rya (iw)

where ;' (iw) and 755 (iw) are defined as follows,

"1_11(1}0) w2, /(52 + 2¢o1wors + why) (35)
o (W) = Wi,/ (8% + 2¢o2wo2s8 + wda)

rit(iw) and 735 (iw) represent the low-pass property of
ond order filter. wo; and woz are the cut-off frequencies
for u; and u, respectively. We introduce v(iw) repersented
as follows,

v(iw) = R(iw)u(iw) (36)

From Eq.(34) it can be inferred that R~1(iw) represents

the transfer matrix of low pass filter. Therefore, v(iw)
and u(iw) are the input and output of low-pass pre-filter
respectively, as shown in Fig.3(a). New state variable z
is introduced to represent the internal description of the
pre-filter as follows,

2 = Apz+ Brv (37)
u = Crz (38)
z = (21,22, 41, %] (39)

where Ar and BF are represented as follows,

o : I
Ar = e e e (40)
-D4 T —2G

C; = diag.(¢o1wo1,02wo2)
D; = diag.(wd;,wdy)

Bp = | -+ | (41), ct =1 | (42
D1 0 '

In order to construct the closed-loop of the extended sys-
tem shown in Fig.3(a), we introduce the extended state
variable Z as follows,

7= (o7 i 7] (43)

The state equation of the extended system is represented
as follows,

§ = Az + Bv (44)

where A and B are represented as follows,

resultant filter

(a) extended system with prefilter

pre—filter

(b) closed-loop of frequency shaped regulator

Fig.3 Block diagram

—150—




A BCF _ 0
A= oo o ees (45), B = (46)
0 : Ap 0]
Introducing the output matrix C, which is time-invariant,
as follows,

C=[c§0] (47)

the output equation of the extended system is represented
as follows,

g =Ct - (48)

We can rearrange Eq.(33) for the extended system with
new variables as follows

7= %E/:llléi(i@llu|Iv(iw)l|2]dw (49)

after applying Parseval’s theorem again, J is rewritten in
time-domain as follows,

J =/ [2TCTCz + v |dt (50)
: 0

Since £ and v are related with time-invariant weighting
matrix(CTC and I), the feedback gain can be determined
with conventional design method for regulators as follows,

v = -BTPi = -K,z- K,z (51)

where P is determined from Ricatti’s equation shown as
follows,

ATP+ PA-PBBTP+CTC =0 (52)

As the controllability and observability of A, B and ma-
trices are assumed for plant, the extended systems of A, B
and C can be stabilized.Then closed-loop of the frequency
shaped regulator is composed as shown in block diagram
of Fig.3(b). As the reduced oder model is applied for the
plant, the output of the model contain the residual er-
ror w. Therefore Kalman filter is applied to estimate the
state variable £.

4. VIBRATION CONTROL ON FLEXIBLE
ROTOR

We are discussing the practical aspect of the controller
designing. The object is schematically shown in Fig.4.
The slender rotor, which has a large disc in the midst,
is suspended by an axial magnetic bearing and is sup-
ported radially by four radial magnetic bearings; the two
at the upper end and other two at the lower position.

axial sensor

~axial magnetic
bearing

radial sensors

upper radial
magnetic bearing

disc

520m

lower radial .
magnetic bearing

radial sensors

driving motor

L
T X\

total weight of rotor : 2.9 (k) .

Fig.4 Schmatical cross-sectional view of 4-axis controlled
_Imagnetic bearing and suspended flexible rotor

The total length of rotor is about 520mm and its weight
is about 3.0kg including a large disc. The rotor is modeled
with FEM. The computational results of mode shape are
shown in Fig.5. The first natural frequency of bending is
52Hz. As the rotor is divided into 15.components, totally
15 eigen frequencies and eigen vectors are derived. But
taking their significance and accuracy into consideration,
first four modes are reserved at the computer simulation.

First designing of the frequency shaped regulator is ex-
ecuted by using the flexible rotor dynamics model which
has two-rigid body modes and first two flexible modes. In
case of the low-pass filter of wy; = wy, = 251.3 (fo =
40Hz) and (o1 = (o2 = 0.5 matrix A, B and C are
shown as in Appendix.The gap length £, = 0.5 mm and
the bias current of the coil iy = 0.5 amp. are assumed for
the magnetic bearing. Applying these matricies, gain ma-
trix K of the regulator for extended systems are derived
by using MATLAB toolbox as follows,
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K. = 63130 —83420 2019 165.3
T 7 | 56810 47160 -—176.6 373.8
566.4 —728.7 12.46 —0.1210
653.7 521.4 —11.50 0.2828
K. — 1.219 -0.0203 0.0034 —0.00005
* = | -—0.0202 0.9000 -0.00005 0.0027

(53)
The pole locations of the closed loop for the plant are
derived from the eigen values of matrix (A — BK;) as
shown in table.1.

—1.269e — 02+1.553e + 03 1
—1.794e — 02+3.065¢ + 02 ¢
—2.386e + 02
—8.816e + 01
—1.605e + 02
—1.134e + 02

table.1

The adequacy of the regulator is proven with the com-
puter simulation as shown in Fig.6 (a). The intial con-
dition on the simulation is given, where the center of the
rotor is displaced by 0.15mm (conically) and the input
voltage is zero. On the simulation the sampling rate of the
controller including the pre-filter can be given else than
the simulation time division of Runge-Kutta solver. In
this case the controller sampling rate AT = 0.5 msec is
assumed. Fig.6 (b) shows the variation of the input volt-
age of the upper electro-magnets. At the start of the sim-
ulation £ = 0.15 mm and then the rotor is applied the
attracting force to increase the displacement, while the in-
put voltage of the electro-magnet does not rise. The rotor
moves to the direction where the displacement enlarges till
the input-voltage rises sufficiently and the restoring force
rises at the pair of electro-magnets. After the controller
works effectively the rotor is settled down at the equilib-
“rium point within about 0.05 msec.

Further designing of the regulator is tried on the ba-
sis of simplest rotor dynamic model that contains only
two rigid-body modes. The derived gain matrix X for
regulator is shown as follows,

63120
56811

—83400 566.6
47160 653.6

—728.9

K. = 521.5

(54)
where the same low-pass filter as the above is assumed.
Comparing the gain matrix with that shown in Eq.(53) we

find that the components for the rigid-body mode state
variables are almost common between both gain matrices.

(b) 2st mode;

(c) 3st mode; 553 Hz

Fig.5 Mode shape of flexible rotor (FEM)

On the other hand, as the longer sampling rate in the con-
troller is favourable, the computer simulation is excuted
for the controller of the gain matrix of Eq.(54) assum-
ing the sampling rate AT = 2 msec. We can find from
Fig.7 that the stabilized rotor motion is assured though
the settling time elongates compared with the case shown
in Fig.6 (a). The influence of the filter cut-off frequency
is interesting. The simulation result is shown in Fig.8
for cut-off frequency fo = 25 Hz and the same sampling
rate. The rotor motion is stabilized not only for the initial
displacement but also for the disturbace of 80 H z imposed
ont = 0.20 sec during one fouth of its period. We should
add that for the longer sampling rate AT = 3 msec, the
controller is effective. As the cut-off frequency fo de-
creases, the lag time at the input voltage rise increases
and finally the rotor fails in restoring the equilibrium con-
dition. A typical sample for the case of fo = 10 Hz is
shown in Fig.9 (a) (b).
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N
Fig.6 Vibration control by the regulator
fo= 400z Ap _ g5 msec
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0.24 -
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Fig.7 Vibration control by the regulator designed

on the simplest model; rotor displacement
fo = 40 Hz, AT = 2.0 msec
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Fig.8 Vibration control by the regulator;
rotor displacement
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Fig.9 Vibration control by the regulator;
fo = 10 Hz, AT = 2.0 msec




5. CONCLUSION

The effectiveness of the regulator containing the pre-filter
of low pass property was verified for suppressing the vi-
bration of the flexible rotor supported by magnetic bear-
ings by using computer simulation. The regulator was
derived from the rotor model containing only two rigid-
body modes. The influences of the controller sampling
rate and of the cut-off frequency of the pre-filter were ex-
amined. We can conclude that the frequency shaped reg-
ulator is applicable for controlling the flexible rotor sup-
port by magnetic bearigs, even if the accurate dynamic
models of the flexible modes are not accessible. The reg-
ulator applicability will be verified on the experiment of
the systems at near future.
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APPENDIX
0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
8974 —2214 8185 4650 —4.395 1.084 —0.401 —0.228  0.227 0.227 0.0 0.0
- —2203 10650 —1267 786.6 1.079 -5.217 0.621 —0.385 —0.297 0.186 0.0 0.0
A= 4091 -—6341 -93910 —26.31 —0.200 0311 -0046 0013 0023  —0.002 0.0 0.0
932.4 3931 —26.31 —2412300 -0.114 —0.192 0.013 —0.026 —0.0049 . 0.017 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 —63170 0.0 -—2513 00
[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 _g3170 0.0  —251.3 |
[ 0.0 0.0 } [ 0.5803  0.5803 W
0.0 00 —0.7592 0.4729
0.0 0.0 0.1179 —0.0121
0.0 0.0 —0.0248 0.0850
0.0 0.0 0.0 0.0
- 0.0 0.0 AT 0.0 0.0
B = 0.0 0.0 ’ ¢ = 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
63165 0.0 0.0 0.0
{ 0.0 63165 | [ 0.0 00 |
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