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ABSTRACT

Since active magnetic bearings have been employed in turbo-machinery, a corresponding simulation technique combined with

rotor dynamics and controller network is required for design, runing operations, and so on. This paper presents the simulation method and

its applications to stability estimation, unbalance responses and frequency response of a servo control system.

The rotor system is reduced to a small model by a quasi-modal modeling we developed. The control network is expressed by the usual

state equations. Both the model and the equations are then combined for the simulation analysis. In addition to the usual control law, e.

g., PID, the observer based state feedback and so on, the developed program is capable to cover the tracking filter with rotational speed and

cross talk between x and y channel control, which are related to empirical knowhow of the rotor vibration cntrol.

Some examples of the numerical simulation are presented for demonstrating practical applications of the developed program.

1. INTRODUCTION

Rotordynamics related to ball and oil-film bearings have been the
major subject in the study and development of rotor vibration analysis
programs. Since present industrial rotating machines such as turbine
compressors use passive bearings, such programs can cover almost all
types of rotating machines.

Recently, however, electromagnetic bearings, i.e., active bearings,
are increasingly used in various types of rotating machines. Current-
ly available commercial control-type rotating machines incorporating
electromagnetic bearings are mostly small-scale machines such as
turbo molecular pumps and X-ray tubes. However, the application
range is increasing to large-scale rotating machines as well.

Electromagnetic bearings are thus becoming more important in the
field of rotating machines in general. As a result software to assists
in the design and development of rotating machines controlled by
electrémagnetic bearings is being currently developed.

In the case of an electromagnetic bearing, the output current is
determined by an electronic circuit on the basis of input of displacement
signals detected and then runs through a coil and induces on electro-
magnetic force because of vibration restraint.  All bearing reaction
forces are determined by the electronic circuit according to control
rules. Accordingly, the control system of the rotor must be analyzed
from the viewpoint of both the conventional rotor dynamics and the
control theory.

Rotor vibration is modeled by the quasi-modal method[], while the
electronic circuit is expressed by an set of state equations. The
problem is how td combine these two formulations. Rotor vibration
is described as a lateral vibration consisting of forward and backward
rotor motions. In accordance with this, the electronic circuit is
represented as a transfer function, where backward transfer function G
(—jw) is used in addition to the ordinary forward transfer function G

(jw).

This study summarizes a method to combine the rotor and elec-
tronic circuit by introducing the concept of forward and backward
vibration. Some examples are shown to demonstrate the suitability
of the developed method for stability analysis, unbalance response

analysis, and frequency response analysis.

MOMENCLATURES
M: mass matrix
Cg: gyroscopic effect matrix
K: = [Ku K ) rotor stiffness matrix (Kz' = Ki2).
Ko Kzz]
F: . [F, F,] : force

U, U, : Unbalance vector
Z: complex displacement vector
equal by definition

*: conjugate of %

Q bearing reaction force

Zy - displacement vector of inner coordinates

Zy ! displacement vector of boundary coordinates
@ nayﬁral frequency of rotor inner system mode

é, &1, ¢ : undamped critical speed mode of inner system

g deflection mode when boundary coordinates are forcedly dis-
placed

& deflection mode when the boundary is forcedly displaced at
unit speed

Q: rotational speed

k,*:  equivalent spring constant at forced displacement of bearing

Cg2*:  equivalent gyroscopic action at forced speed of bearing

S, S;: quasi-modal coordinates

G(s), H(s) : transfer functions

i = imaginary unit = /=1

B*,, : modal mass corresponding to bending mode

B*,, : - modal mass correnponding to relation between bending mode
and bearing forced displacement and/or velocity
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B*,, : modal mass corresponding to bearing forced displacement

2. SYSTEM STRUCTURE OF A CONTROLLED TYPE ROTOR
2.1 Equation of Motion for Rotor System

Since the displacements x and y in directions X and Y of the rotor
vibration are represented, the combination of both rotor vibrations is
Further,

displacement of the boundary (the bearing) is denoted by Z,, and that

represented by a complex displacement Z = x + iyl

Hereafter, the inner
Then,

of the other inner system of the rotor by Z,.
system is represented by suffix 1, and the boundary by suffix 2.
the equation of motion is obtained as follows:

(G e GG -(HA ) @

My) iQCp 7y Ky Kp)lZy) Ry Q) (G
where F,, F,; force

Q=0Q(Z,Z,Z,Z); reaction force of oil-film lubricated bearing

G=G(Gw)=G(Z, 2) ; reaction force of electromagnetic bearing

If the right side of Eq.(1) is represented by force F, and written a

simple form using complex displacement Z, we obtain:

MZ+1QCgZ+KZ=FA @)

From Eq.(2), a state equation is as follows:

T - N
ECEEE e

K)\Z K o Z (0]
The following transformation is defined for the quasi-modal trans-

formation shown in Fig.1:
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(5) Deflection mode ; forced velocity ~ (2) Free vibration mode for inner system

Fig.1 Mode Shapes for Quasi-modal
Transformation

Substitute Eq.(4) in Eq.(3) and perform a conjugate transpose of
[®] to obtain the following equation:

By* B 0 \(S)) (iwBy 0 0[S
BBy 0 || )= 0 -iQCH -k#| 2
00 k7, ok olz ®)
-iw ¢ F
+ th|+Fl—Q—G
0

where
B“"‘=CL)2¢)5t M ¢+ #t Kyé
By=—i (0 ¢' M5 +Q ¢! Cy0)
Byr= 0t M8 +M,— Q&' Cg0
k3=ky| 0 +kgp
= equivalent spring constant where inner system is viewed
from the boundary
Cii=kafytCn
= equivalent damping factor where inner system is viewed
from the boundary
Eq.(5) is the formulation for the portion which corresponds to the
rotor system of a controlled type rotating machine. It represents the
reduction by a quasi-modal transformation by the use of the eigenmode
(marks O and @) of the inner system at a certain rotational speed, as

shown in Fig.1(3).
2.2 Dynamic.Characteristics of Oil-Film Lubricated Bearings

In the case of a passive oil-film lubricated bearing, the bearing
reaction forces Qx and Qy in directions X and Y, respectively, are
represented by spring constants k;; (i, j = X, y) and damping factors cj;
(i, j = x, y), and are defined as 8 parameters of oil-film as follows:

Q= kX + KyY + c + Gy
Qy=k”‘x+k,y+c”e’<+c»§'

It is generally known that the presence of cross stiffness such as

(6)

kyy and ky; can cause unstable rotor vibrations.
2.3 Dynamic Characteristics of Electromagnetic Bearings

In the case of an active electromagnetic bearing. These dynamic

factors are determined by the adjustment of the controller Generally,
isotropic dynamic characteristics of bearings are obtainable by adjust-

kg= ko= ko €a= cox= s
ke=ky=— ki cc= o=~ o
Reaction forces are then given by the following equations:
Q=kix+ky + e+ e
Q= ky —kex + gy = cx
i.e.Q=Qu+iQ,

=kgz — ikz+ ¢z —icz

Parameter k is an important factor in terms of stability. It

ment:

M

indicates a cross talk between channels X and Y of the control circuit.
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Generally, a controller accepts displacements x and y as input as
shown in Fig.2, and consists of directly coupled transfer function Gd(s)
and of cross-coupled transfer function Ge(s). As a result, forces Q,
and Qy in directions X and Y, respectively, are output via the actuator.
Physically, this type of a system is a 2-input, 2-output type system. In
the simulation, this form is transformed into l-input,1l-output type as
shown below, by using a complex number.

Q= (Gy- IGC)Z ®

Therefore, the problem is reduced to analysis of a control circuit
system with one input (Z = x + iy) and one output (Q = Oy + iQy),
with a complex transfer function G(s) = Gd(d) — iGc(s).

A control circuit can also be shown as follows using a state
equation and an output equation:

BV =AV +RinZ

Q=RoutV +DZ 9)
B, A: factor‘matrix
Rin:  vector proportional to input
Rout :  vector proportional to output

D: stiffness
where V is the voltage expressed in the complex form, V = V, + iV,,
and Vy and V; are voltages of the control circuit in directions X and Y,

respectively.
3. STABILITY ANALYSIS

For the rotor system, the mode shown in Fig.1 is used to formulate
a reduction system using the quasi-modal method.  The control cir-
cuit is shown by a state equation. Stability analysis is actually
performed by introducing a differential equation combining above two
and by conducting a complex eigenvalue analysis for the equation.

The equation for a global system consisting of a quasi-modal
reduced rotor system and control system be expressed as a matrix

shown in Fig.3. From the upper left to the lower right corner of the

1. Real Representation

QY = a(Yd_Xc)
Gq(S) ; Direct channel, G(S); Cross coupling

2. Equivalent Complex Representation :

Define Z=X+iY Q=Q,+iQ,

| S TEE—
z G(S)=Gg-iG, Q

Fig.2 Network with X&Y Cross Coupling

matrix, the terms along the diagonal are vibration of the inner system
of the rotor, vibration of electromagnetic bearing, and voltage of the
control circuit.

The inner system starts to vibrate due to the presence of B,,.
Through the vibration of the bearing, RIN is the bearing vibration,
which is an input to the control circuit,while ROUT indicates the effects
of reaction forces of the electromagnetic bearing, which the output of
the control circuit.

4. UNBALANCE RESPONSE ANALYSIS[I
Unbalance response of rotors which are supported by oil-film

In this Section,
contains discussion of the problem of definition of definition of the

lubricated bearings has been studied for many years.

bearing characteristics when an oil-film lubricated bearing is replaced
by an electromagnetic bearing. 4

4.1 Oil-Film Lubricated Bearing

Generally, the equation of motion for a rotor supported by oil-film
lubricated bearings is given as follows:
MZ+iQCZ +KZ+Q=F=UQe™ 10)
Assume the vibration response and.the bearing reaction force are
given as follows :
L=Zg™+Zye ™ (11)
Q=0Q ¢+ Qe (12)
Then, forward and backward vibration equations are obtained as
follows:

[—Q’(M+C9)+K] Ze+ Q= QU

Qb+ [—Q’(M—Cs)+K] Zy=0 (13)

If the following 8 parameters are used:

Kee Ken Ko Ky Goo Cap O Cyy

((Rotor System ; Quasi-modal ) displacement

ngrthogonal \( ) %% orthogonal (
b 3 0% S
e, _ %% -K3-D .
7, —i0CL, -RouT|| Z,
E 22 E Z
>0 )

\\ RIN

\ Ay
( Controller Unit; State Equ. ) Voltage

Fig.3 Global State Equation Combining Quasi—
modal reduced Rotor with Controller
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the characteristics of an oil-film lubricated bearing using complex

forms are as follows: . ,.
Kyt K Ky~ K <y~ K Kyt K
KfJx‘f_zz,ri_n__xz, Kb:‘l&—ﬂu Kyt B
2 2 2 2
_ Cyy— Cy C
C=£Xl+_cm+i YX Zz,Cb=j—‘ﬁ+iiCﬂ‘
2 2 2 2
Then, the bearing reaction force Q can be expressed as follows:
QEK{_Z+K@+C*Z+CBZ 14)

From Eq.(11), this relation becomes:

Q{_=(K*+iQC+)Z{+(l_(_b+iQ(_ZE)Zb )

Finally, the following forward and backward vibration equations are

obtained:
K K+iQC KytiQGC
[(M+C??— Qz_ﬁ_zz_r_{-] Z*——hE_t Zb=—U
. . (16)
Kp+iQCp K K§+1QC4 .
ARz (M-t = g

If the vibration force is proportional to the rotational speed the

following equation results:
_11.0 L [T e 0
F=Ug™+ Up an

This equation can be solved in a similar manner.
The rotor portion of Equ.(16) is analyzed using a structure shown

in Fig.5, where the quasi-model transformation has been performed

Natural Frequency

Qe
Rotational Speed £

Fig.4 Undamped Critical Speed
(Inner System Only)

$*Us

2 €’U|+U}
a4 '
k(Q)+i2C(Q)
S + A s =Q2Us
Fig.5 Unbalance Response after Quasi-Modal
Transformation

- 0?2 B

using orthogonality of the critical mode of the inner system shown in
Fig.4.

4.2 Electromagnetic Bearing

Transfer function of the electronic circuit of a controller for
electromagnetic bearing is represented by G(s). Displacement z is
the input, and bearing reaction force Q is the output. This relation-

ship can be shown in the following block diagram:

If input Z and output Q are as shown by Eq.(11) and (12), respec-
tively, the following equations are obtained when G{s) is a linear
system:

QF=G(iQ)Zf
Q=G(-1M)% (18)

By substituting the above in Eq.(13), the dynamic characteristics of

electromagnetic bearings can be shown as follows:

K{+iQCf=G(iQ), Kb+iQCb'=0

ReriQG=0(=1@), KpriGp=0 (19

Eq.(16), which is applicable to oil-film lubricated bearings, is then
rewriten to suit the case of the electromagnetic bearing using the above

equation, and we obtain:

K G(3iQ

(M+Cp—g: = ézl H 7 20)
K G

M-y~ ——(Q#z‘—l] Z,=0

In this way, an unbalance response analysis can be performed using the

quasi-modal modal, Fig.b.

5. FREQUENCY RESPONSE ANALYSIS

Frequency response assumes inputting the electrical input En (n for
The matrix of a global system consisting of
The upper half

of the figure corresponds to the equation for the rotor system, and the

nodal point) as a force.

a rotor and a control circuit system is shown in Fig.6.

lower half to the state equation for the control circuit system. fn is

a force working on the state equation, and includes En in its internal

o sl
0
o 7T S —
4er—D. —Rou || 22 4| fmn

o} O Z; 0
F L
': Rin ': A v fn

I

Be X Ac X F
where,
B! = w?'M, ¢+ ¢'Ky; ¢ =diagonal matrix K3 =kad+kae
Bl =—i {w8'M; 0+0Q 8' Cg 01 Clo=kan &g+Cg2

Bho = &My 0+ Me—028'Car9 & =i0&
Fig.6 Matrix Structure for Global System

(Frequency Response Analysis)
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portion.

The force, which is obtained from the output equation of the
control circuit system, works as a reaction force to suppress the
bearing vibration. For this reason, the portion corresponding to the

bearing vibration has a minus sign as shown in Fig.6, before it is stored.

6. EXAMPLES OF NUMERICAL CALCULATION
6.1 Basic Characteristics of Analysis Model

The vertical rotor, shown in Fig.7, was used as the analysis model.
A high frequency motor (No. 20) was located between the upper and
lower electromagnetic bearings (No. 13 and 28). Thrust bearings
were used for the rotor shaft. »

To identify the basic characteristics of this rotor, the upper and
lower electromagnetic bearings are replaced by spring constants, which
are then used as parameters for indicating change in the natural fre-
The horizontal axis shows
The fre-

quencies shown are, from bottom up, 1st and 2nd rigid modes and 1st,

quency. The results are shown in Fig.8.

bearing stiffness,and the vertical axis shows frequencies.
2nd, and 3rd bending modes.  The shape of each mode is shown in the
lower right corner of the figure.

Since the rated speed of this particular rotor is 300rps, the modes
up to the 1st bending mode are covered in the control range, as seen in
Fig.8.
higher nodes will not vibrate.

It is now necessary to adjust so that the 2nd bending mode and

The block diagram of a control circuit is shown in Fig.9. The
basic structure comprises a PID circuit with proportional, integral and

differential elements.  In addition to the PID circuit, a notchfilter and
a low pass filter with cross stiffness are provided to stabilize the high
and low frequéncy modes, respectively. Further, a tracking filter

with cross stiffness is used to prevent resonance.

-

Simulations to rotate the rotor sutably up to the rated speed by
using the added portions are performed. The results are discussed

below.
6.2 Stabilization of High Frequency Mode

First, stabilization of high frequency mode is described referring to
Fig.10.

circuit proper is shown in the upper part of Fig.10.

The Bode diagram of transfer characteristics of the PID
The horizontal
axis is for frequencies and the vertical axis for gain and phase.
Regarding the phase, the hatched area indicates the phase-advance
area, or generally stable area.

If the rotor is rotated using this PID circuit, higher modes (2nd and
3rd bending modes) enter the phase-delay area when the rotor reaches
A notch

filter was incorporated and the phase-advance area was enlarged in

a certain rotational speed resulting in unstable operation.
order to stabilize these modes. ~Cases 1 through 4 in Fig.10 indicate
this process, and simply show the phase-advance and phase delay areas.

In case 1, the poles of the notch filter were set at 350Hz (¢ = 0.1)

10K

T T

L-3rd of Bending Mode
F 2nd of Bending Mode I

quency Hz
=

[~ -1—_R_aTe.a_S_|:>é§d_3_06r_p§ ''''''''''
]00 1st of Bending Mode |
o F o |
= E 0 e —
v - > ams. [ TT1]
—_ - )y de
g <X R‘\ I
=N IGE L/0:\\’*"—' \[\AM.B.
- F Ast ( \"
© . AN
P4 E tst 2nd 1st  2nd  3rd
- M —
Rigid Mode Bending Mode
I [T TT] Ll Loiavpnl a1
1 10 100 1K 10K 100K

Bearing Stiffness Kgf/mm

Fig.8 Relationship of natural frequency versus
bearing stiffness

Input LPF iy Diﬂerentn_;l
A.M.Bearing
J11 (pper
7 —lL:L—
Motor H
T
M8 A.M.Bearing
ot (Lower) 0-532+§Z.J;Ts§+m2 %
o 3
Thrust L &
Bearing ne s
] ] Fig.9 Network of controller [ PID +Notch filter, ]
|
. . LPF + Cross,
Fig.7 Calculation model Track.filter + Cross
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and 680Hz (& = 0.1).
and the modes of -346Hz and 954Hz were unstable.

The phase-advance area was not large enough,
In cases 2 and 3
unstable modes were also observed. The range where all eigenvalues
up to the rated speed would move was checked, and the frequency and
damping ratio of the notch filter were adjusted so that the filter would
cover all of these eigenvalues. As a result, the high frequency mode
was stabilized as shown in case 4. Transfer characteristics of the
control circuit proper in this instance are summarized in the Bode

diagram shown in the bottom part of Fig.10.
6.3 Stabilization of Low Frequency Mode

Fig.11 shows the results of stability analysis made with the use of
the PID circuit equiped with a notch filter and adjusted as discussed in
Section 6.2. Rotational speed is shown in relation to the horizontal
axis. The figure on the left side indicates the change in the each
eigenvalue, while the figure on the right side shows the change in the
The solid lines are for forward and the dashed lines
The first backward mode is unstable for
To stabilized

the mode, a low pass filter with cross stiffness was added to the control

damping ratio.
for the backward mode.
rotational speed over 200 rps, as shown in the figure.
circuit. As a result of parameter adjustment, the first backward
mode was improved as indicated by the dashed line pointed by the
‘arrow, and the mode was now stable throughout the range of the rated

speed.
6.4 Resonance Prevention

An example of unbalance response calculation is shown in Fig.12.

(a) g’ Bending Mode
(] 2nd  3rd ]
2 0 eI 777 77 AN
] N
£ -90

oo
o 40F ]
] ]
(—“ 0 L L1 aagl L L1 11l L L1l
(0] 1 10 100 1K
Frequency Hz 350Hz 680Hz
(b) £=0.1 £=0.1
Case (1 )———F Stable
Unstable _a46 533 954
£=0.25
Case (2) P meL?AE
340Hz _ —346
£=0.25
Case (3) FZ HLJ ‘LJ%
330Hz —337
£=0.25
Ca‘39 (4) 77 AJWJ?AL

(c) @

o 0F ]
2 0 P T T T T T T 77 e,
rm—

£ -9

60
R _/W
c 20 ]
‘© 0 [T RN T B I I W T
© 1 10 100 1K

Frequency Hz

Fig.10 Stabilization of High Frequency
Modes (Notch filter)

The horizontal axis is for rotational speed, against which the change in
amplitude is shown. Unbalance quantities are shown in the figure.
From this example, it is deduced that although the peak of the first
bending mode appears around 170 rps, amplitude can be held at a low

level by adjusting the value of tracking cross stiffness.
6.5 Frequency Response Analysis

Lastly Fig.13 shows a complete round of transfer characteristics
obtained for the global system comprising the rotor and control circuit
system. The figure shows the open loop characteristics of the lower
rotor shaft. The horizontal axis is for frequency, as a function of
which the change in gain and phase is shown. This example is for
rotor speed of 0 rps. Generally, in a gain curve, the peak of the
resonant point represents the eigenmode when the electromagnetic
bearing is free, while the peak of the antiresonant point does so when
the bearing is pin-fixed.

Fig.14 shows the open loop characteristics for rotor speed of 300
rps. Since these two examples are for the forward vibration, the
position of the gain peak is moving toward the higher frequencies as the

rotational speed increases.

°
N 1000 S SEEEERE
v
. o S
=
2 & NN
o 100 o Ny
=} o <&
o c 0 A
@ — / \o
£ g ANy

= 5 —0.01 v
© (o] a4y
5 10 - F- Ha~
0] g L bl_g ~
z <] Tk Ea—~<; Backward iy
S s S Zoenie
o ' =000 —— 1 =

0 100 200 300 0 100 200 300
Rotational Speed Q rps Rotational Speed Q@  rps

Fig.11 Stability Analysis (LPF + Croés Stiffness)

50 ——3——T—=—200gr-mm A0
g:E 40!
o 30F = ko=
A —
-— —_—
= 20t = Lower
CEL K . Magnetic
< 10t 200gr-mmx90° /' / Bearing
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0 100 200 300

Rotational Speed rps

Fig.12 Unbalance Response and Cross
Coupling Effect
(Tracking filter + Cross Stiffness)
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Gain dB

CONCLUSIONS

The above contents is summarized as follow.

~

For the turning vibration of a rotor, forward transfer function G

(jw) and backward transfer function G(—jw) were introduced in

the electronic circuit, and a differential euqation was established to

couple the rotor and the electronic circuit.

) It is possible to analyze a cross circuit and tracking/tuning type
circuit by expressing the transfer function G(s) of electronic
circuit with a complex number.

) A force may be input at any desired point because the rotor system
and electronic circuit system are meshed and assigned with nodal
points by the finite element method.  Further, output points may

be freely changed tc obtain transfer characteristics, because a

sensor can be installed on any desired point.

4) Stability analysis, unbalance response analysis and frequency

response analysis were explained using examples.
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