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Abstract

A mechanical model analysis of a flexible rotor is combined with an electrical
characteristic modelling of control components of a magnetic bearing system.
Eigenvalues and system stability are examined for several control strategies.
"Quasi-Colocation Pseudo-Inverse" and "Selective Eigenvalue Move" techniques are
presented as practical and effective control design methods. Testing result of the
flexible rotor in the form of a transfer function is compared with the calculated
value, and the effectiveness of these techniques has been ascertained.

1. Introduction

unknown states, it is very difficult to

At the design of a control system of

active magnetic bearing supporting a
rotating body, degrees of freedom of
motion around the center of gravity
should only be considered when the

object rotor can be treated as a rigid
body. The design 1is rather easy if
there are no problems of big unbalance
excitation or gyroscopic effect.

On the other hand, if the suspended
rotor is flexible and the design speed
exceeds the eigen-frequencies of bending
modes, the rotor should be treated as a
multi-mass body connected by flexible
shafts with finite spring constants.
The design problem becomes complicated
as the number of degrees of freedom
increases largely. In addition to such

a mechanical modelling for modal
analysis or eigenvalue analysis,
frequency characteristic of the

electrical system of the control circuit
should also be taken into account as an
element which greatly affects the
overall eigenvalues.

The control of flexible rotors has
been investigated by many researchers
[1-5]. If such techniques as optimal
regulator or pole assignment using state
feedback can be used, system eigenvalues
are arbitrarily designated, bringing as
desirable system characteristic as
possible. Practically, however, the
number of sensors to detect the motion
of the rotor is limited, so only a part
of the whole states are observed,
inhibiting state feed-back. As for the
constitution of observer to estimate

realize in the actual control circuits
as 1its dimension becomes intolerably
large. Therefore, it 1is necessary to
approach the preferable characteristic
using output feed-back maintaining
stable eigenvalues. Many research works
have been performed along this approach.
As concrete design methods are proposed
Quasi-Modal Control [1] and Pseudo-

"Inverse [2].

In .this paper the total control
system 1is expressed for a practical
flexible rotor combining mechanical
modelling of lumped mass and beam chain
system with electrical modelling
considering frequency characteristics.
Control system design by output feedback
is investigated for several methods, and
"Quasi-Colocation Pseudo-Inverse" is
presented as an original design method.
Also presented is "Selective Eigenvalue
Move" method which modifies the fine
arrangement = of system eigenvalues.
Finally the effectiveness of these
methods are verified experimentally.

2. Mechanical System Modelling

The rotor is modelled as composed of
a few disks with masses and moments of
inertia and of connecting shafts without
mass. Fig.1 shows k-th shaft section
with a variation of section profile
bound by two disks of k-th and (k+1)-th.
Let shearing force at shaft end be F,
bending moment M, inclination &, and
deflection x, then
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Figure 1 Shaft model
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indicates axial length, Ex
elasticity, and I« moment of
section. The expression of
s ax ~ dx with parentheses ()

jndicates that the variation of shaft

diameter is

considered (see Appendix A),

t in order to reduce the number of over-
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Figure 2 Disk model

" From the relation of (1), F and M
can be expressed by '@ and x as follows;

[Fk‘ bilk-dx dk bk -bkl(ex )
Fre1|=1/8k|bkle-dx  dx b« -bk Bk+w
Mi * ck-lkax -Ck ~—ak ak| X«
Mk +1 [Ck-lkak (lkdk)(lkbbx ak) Xk+1)
+1e2b\ —ck/\-ax F1lkbk
—lkdk)
(2)

Av=ardk-ckbk

Referring to Fig.2, the equation of
motion - of k-th disk without internal
damping of the rotor 1is ; '

my %k = Fy-Fy*+ux (3)
Jewbe = My*-Mk (4)

where uyx is the bearing reaction force,

and Jrk is around the radius direction.
Relation (2) is substituted into (3)

and (4), with a resulting expression ;

Xk-1
Gg-1
(m gk]+ {Kkii}|x«x = [Uk](i=1,2) (5)
\Jrkbk Ok 10 J(j=1,8)
; Xk+1
G+
where

Kk11=-bk-1/8k-1
Kk12=(—1k—1bk—1+dk—1)/Ak—1
Kii3=by-1/B8k-1+bk/Bk
‘Kki4=—dk—1/Ak-1+(lkbk“dk)/Ak
Kk1s=-bk/hk

Ki16=dx/ Ak

Kez1=(lk-1bik-1-ak-1)/Bk-1
Kk22={1k—1(bk—1lk—1—dk—1~ak—1)+0k-1}/Ak—i
Kk23=(-1k-1bk—1+ak-1)/Ak—1+ak/Ak
Kk24=(1k—1dk—1—0k—1)/Ak—1—(Ck—aklk)/Ak
Kkes=-ak/Dk

Kres=Cck/ABk

Applying k = 1 ~ n+l1 for the rotor
partitioned by n, the equation of motion
for the whole system becomes as follow;

MX+Kx=Lu (8)

(X1,91.X2.62,'"-.Xn+1.9n+1)T

(d1,uz, )7
diag{ml,Jr1,m2,Jr2.'"',mn+1,Jr(n+l)}
:Band matrix composed of Kki;(k=1,n+1)
:Matrix indicating bearing locations

2le 1R
wonon

I =

Underlined letters indicate vectors or
matrices, and diag{(} means a diagonal
matrix.

The natural boundary condition 1is
applied at both ends of the rotor ;

Fi1 = Mg = Fn+1® = Mp+1~ = 0
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3. Undamped Mode Analysis

Let u=0 in (86),
free-free-mode

and eigenvalues of
without damping and

bearing spring forces are obtained.
Substitution of Xx=xeexp(jot) into (6)
yields the form of normal eigenvalue
problem ;

Ax=1/02x ; A=K'M (7)

Calculated eigenvalues and eigenmodes
are used in the formation of control
laws stated later.

4. General Damped Modal Analysis
with Electrical Modelling
and Gyroscopic Effect

A spring term and a damping term are
the basic contents of the control input.
However, as each element of the control

system, sensor, compensation circuit,
power amplifier, and control coil, has
usually specific frequency character-

istic, the complete PD (spring and
damping) control is not realized. There-

fore, an electrical modelling or a
consideration of frequency character-
istic 1is necessary. Also, gyroscopic

effect should be taken into account for
high speed rotors.
All these effects are included in the
following formation.
Transfer function of control input
against measured output ;

L(u/x)=(kp+kds)2(aisi)/Z(bisi) (8)

where L( ) represents Laplace operation,
k, and k4 are gains of P and D control
respectively, and a; and b; are coeffi-
cients' of frequency characteristic,
which is usually of a low pass filter
(LPF) with gain decrease and phase lag
at high frequency range.

In the case of 2nd order LPF with
cutoff frequency fe and Q value,
equation (8) becomes ;

L(u/x)=(Kp+kas)/(1+bss+bzs?) (8")

b1=1/Q/(2xf.) b2=1/(2xnfc)?2

Equation of motion with gyroscopic

effect ;
mkih . = Frux -Fkx* +uxx ( 9)
JrkOyk-Jak@rOxk = My -Miy (10)
myYk . = Fxy -Fuy* +uxky (11)
Jrkfxk+Jak®@r8yx = Mrx*-Mkx (12)

where o is the angular rotaticnal speed
of the rotor, J.x is the moment of
inertia around the rotating axis and
Jak@r 8k represents cross-coupling
gyroscopic terms. @&, in equation (4) is
replaced by @y« in (10). (Refer Fig.2)

Define extended state vector ;

Xe=(XT,XT,uxT,0xT,¥y7,¥7,uy7,0,7)7  (13)

X1,0y1,X2,8y2, -
Y1,8x1,Y2,60x2, -
(ux1,uxe, ---)7
(uyi,Uy2,"")T

yXn+1,0y,n+1)7

“Yn+1,0x,n+1) 7
X

Y

n N~~~

Extended equations of motion (9)-(12)
are summarized as follows considering

(8:) and combining with an identity
M X-M x=0 ;
DXe + EXe =0 (14)
where
oM [
M0 0
0 {b1} {be} 0
o I [
D= |-m——mmm e T | e
oM 0
0 MO Y
0 (b1} (b2}
0 I o
| Kx 0 -L 0l 0 -Gyro
0 M 0 e
-Gpx -Gax I 0 [
[ o 0 -I
E: _________________________________
0 +Gyro Ky 0 -L O
———————————————— o M 0 0
g "_(_;py ‘gdu l Q
o 0o 0o -I
Gyro=wn‘diag{0,Ja1,OyJaE,'"',O,Ja,n+1}

where G, and G4 represents proportional
and differential feed-back matrices
containing k, and ka4 respectively and
{bi} means diag{b;} or diagonal matrix
representing filter characteristic of
the control system. I 1is the unit
matrix.

For this extended system, eigenvalue
analysis can be performed similarly to
equation (7) ;

Xe = Ae Xe ; Ae = -D°'E (15)
As an eigenvalue analysis technique,

QR method using Hessenberg matrix [6]
has been employed here.
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5. Experimental Apparatus

In order to investigate several
control laws as practical design methods
for the actual machines, an experimental
apparatus was constructed as shown 1in
Fig.3. A disk of weight 1.2Kg is mounted
on the shaft of 410mm long and weight
2.2Kg with bearing diameter 40mm. The
rotor is divided into g disks which have
each mass and moment of inertia, with a
resulting degree of freedom 36.

A small spring constant of 980 N/m
was given to two bearings at @ and @ ,
and the undamped mode was analyzed with
a condition nearly equal to free-free
mode, the result of which is shown in
Fig.4. 1st(1B) and 2nd(2B) eigenvalues
of bending mode lie at 333 Hz and 633 Hz
respectively, SO this is a flexible
rotor which passes critical speeds
of bending modes before reaching the
design rotational speed (50,000 rpm,
833 Hz). This result is also plotted on
the imaginary axis of Fig.5. Between
the two main bearings are mounted drive
motor @ and auxiliary bearing ® . The
rotor displacements are measured at

three points @ ® and

6. Control laws

Rigid Mode Control

The rotor displacement at the center
of gravity is estimated by polynomial
curve fit using displacement sensor
signals. For three sensors parabola
approximation is performed. Neglecting
bending modes of the rotor and assuming
rigid body, PD control gains are
obtained to give appropriate spring and
damping to translational and rotational
motion of the center of gravity.

With this control law damped
eigenvalues are analyzed considering the
rotor flexibility, and the result is
plotted on Fig.5 with the symbol X. The
ond bending mode of 627 Hz is unstable.

Pseudo-Inverse (P1)[2]
Let T be the modal matrix obtained by
the undamped analysis, then using

x=Ta or a=T"1"x (16)

the equation of motion (6) is
transformed into the following equation
concerning the modal coordinate a.

TMT 8+ TTKTa=T"LU (17)
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Figure 4 Undamped mode profile
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Figure 5 Eigenvalues by various
control laws

where

TMTN =1

TT K T = diag{w12,022, - ,0n2}
Therefore, if the following control is
realized ;

TT" L u=F 4 ; F=diag{-2¢;0;} “(18)
then this 1is the 1ideal modal control
which enables arbitrary selections of
damping ratio é&; for the i-th mode with
eigenfrequency o;. However, this 1is
actually not realizable.

Let measured output of state x be S x
and the gain matrix of output velocity
feed-back be G, then

u=6S%Xx=GSTa (19)
Combining (18) with (19) ;
TTLGST=F (20)

is the 1ideal relation of G and F.
However, (20) cannot be solved for G,
because L and S are not generally
regular and square matrices.

Therefore, using Moore-Penrose's
pseudo-inverse (indicated by #, see

Appendix B) of TT L and S T ;
Ger = (TTL)" F (S T)¥ (21)

gives an approximated solution.

Eigenvalues calculated by PI method
are plotted on Fig.5 with symbols w. All
the eigenvalues plotted are unstable.
This is due to "non-colocation"
condition that the locations of sensors
and bearings differ each other. The
importance of colocation condition is
emphasized in [2].

Now suppose the case where colocation
condition holds. Two sensors are located
at points () and () which correspond to
those of two bearings. In this case the
calculated eigenvalues are all stable
with sufficient margins as seen from the
plots of o in Fig.5.

Thus PI method is very effective with
the condition of colocation, while it
is even worse in case of non-colocation,
which is often the actual case.

Quasi-Colocation Pseudo-Inverse (QCPI)

In order to modify PI method for
non-colocation case, displacement and
velocity at the bearing 1location are
estimated by polynomial curve fit using
sensor signals as well as the case of
rigid mode control. Then PI method is
applied for the estimated states at the
bearings.

Let measured states be xn, estimated
states X», and estimating matrix Es,
then ;

(22)

b .
GE: S x (23)

s.ggm
Xb

inn

I= [
nol
Qe

Es contains curve fitting informations
which only depend on locations of each

sensor and Dbearing. The feed-back
matrix G is calculated as ;
"Gacp1 = (TT L)* F (Es S T)*¥ (24)

Calculated eigenvalues are shown on
Fig.5 with symbols ©@. Eigenvalues of
two rigid modes (1R,2R) and 1st(1B) and
2nd(2B) - bending modes almost coincide
with those of PI method with colocation
condition. 3rd and 4th bending modes
differ from colocation PI metod but
still in the stable region. This means
that modal shapes of the rotor of lower
modes can sufficiently be approximated
by a simple curve, in this case -
parabola. The more increaes the number
of sensors used, the higher mode shapes
are well approximated and corresponding
eigenvalues become stabler.

Selective Eigenvalue Move Method

QCPI method stated above has enabled
basically stable arrangement of system
eigenvalues. For the sake of safe
passing of critical speeds or to cope
with the change of eigenvalues due to
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gyroscopic effect at high rotational
speed, it sometimes becomes necessary to
move a specific eigenvalue towards

stabler region. For this purpose, the
following method is presented here.

The characteristic equation of a

system of order n is ;
gn+an-1sn-1+----+ays+ae=0 (25)
Consider following eigenvalue to move ;

Sk = Skr £ J Ski (26)

Equation (25) can also be expressed as ;

(s"'2+bn-3s"‘3+--~-+b1s+bm)
%#(52-2SkrS+Skr2+ski?2)=0 (27)
a; bi and sk are supposed to be all
known. In order that sk may change as;

sk = (skr+dskr) £ (ski+lSki) (28)
equation(25) changes correspondingly

sn+(an_1+Aan_1)sn—1+. .
+(aj+ha)s+ap+bap=0 (29)

Also equation (27) changes into ;

(s"‘2+bn-3s"‘3+~---+b1s+bz)*{s2-2(skr
+ASkr)S+(Skr+ASkr)2+(Ski+ASki)2}=0 (30)

Therefore the increments of coefficients
of the characteristic equation are ;

Aan=-28Skrbn-1+8]sk|2bn (m=0,n-1) (31)
A‘Skl2=(Skr+ASkr)2+(ski+ASki)z‘skrz—skia
b-120, bn-2=1, bn-1=0

Now feed-back gain G has to be
considered to give Aan for specified
Askr and Aski. The characteristic equa-
tion (25) is obtained from the system
matrix Ae. (15) as det|sI-A.|=0. The
effect of the change of elements in G
included in A on eigenvalues Or coeffi-
cients of (25) can be calculated
actually conducting eigenvalue analysis.

The element gi; of G means the feed-back .

gain for i-th bearing from j-th sensor.
Adding 1 to gii, coefficient increments
bdan, i) (m=0, n-1) are obtained, and with
these as column components a matrix Zi
is formed ;

Zi bgi = ba (32)
_Z_i={_A_am,i1,A_am, i2, " ',A_am,ins}

pan, i j={Ban-1,ij,B88n-2,ii," co,bap, T
Bgi={Agi1,Agiz,  ,08ins}T
ga_={Aan—1yAan-2y' ' ',AaB}T

Agi is the increment of the feed-back
gain g:; and should be determined by
(32). ns represents the number of
sensors and is usually much less than
the order of the system n. Therefore
(32) cannot be solved strictly for Agi.
Thus the least square method is applied
(see Appendix C). This is basically the
same as using pseudo-inverse for column-
regular matrix Zi. However, when the
order of the system 1is large, each
element of &da differs by many figures,
and the straight forward solution will
result in a big error. Therefore each
row of (32) 1is weighted inversely by
binomial coefficients.

In the system basically stabilized by
QCPI metod, the 2nd bending mode(2B) of
619 Hz has rather poor stability with
damping ratio of 0.031. In order to

stabilize this mode more, eigenvalue
increment Asz2s 1S specified and the
resultant eigenvalues movement is
plotted in Fig.6. For this actuator the
auxiliary bearing was used. It is

ideal to move eigenvalue 2B only, but
the actual approximation method allows
small changes of other eigenvalues. 2B
is certainly stabilized as larger values
of negative As2s are specified, while
the second rigid mode (2R) is gradually
deteriorated, also 1B turns towards
unstable region from halfway. The point
where the damping ratio of each eigen-
value approaches would be optimum.

The method stated above deals only
one actuator(bearing). To deal plural
actuators at the same time will make the
equation corresponding to (32) non-

400

200

1R
-100 0

-300 -200
-Re (Hz)

Figure 6 Selective Eigenvalue Move
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linear and require iteration. It would
be better to deal actuators one by one,
watching the location of each eigenvalue
and finally obtain the optimum feed-back
gain. '

7. Experimental Result

In order to test the actual system, a
test signal is added to a point in the
control system, and the response is
measured at another point. The selection
of these points is arbitrary, and the
measuring point can even be the point
located just before or after addition.
Here the summing point is selected as
input to the power amplifier of the
horizontal (in y-direction) bearing @ ,
and the measuring point is the horizon-
tal sensor @ . This can simulate the
rotor displacement response to a
disturbance force, which is expressed as
f in the equation of motion (14)
modified as ;

D Xe + E Xe = T (33)

The response transfer function is ;
L(xe/f)=(sI-Ae) 'D-! (34)

The response of sensor @ to the
disturbance at bearing C) corresponds
to one element of (34), which can be
calculated numerically. !

Fig.7 shows measured and calculated
results in Bode diagram. The rotor is
not rotating, so gyroscopic effect is
not 1included. The calculated value of
the broken line is of QCPI metod.

The peaks of 1.25 KHz and 2.25 KHz
are due to rather small value of damping
ratios of 3rd and 4th bending mode.
These modes are actually self-oscillated
due to more complicated frequncy charac-
teristic than that of (8') and non-
linearity of the control components.

0
Gain |
(dB) [ ] :
<L 4
_40 \ - : /’A‘\ I"|
\7\.‘\4\_/ \\ II ‘\ /
: VVK‘ \YAIVI
|
8010 100 1K 3K
Frequency (Hz)
—— : Measured - Calculated
Figure 7 Frequency response

These oscillations were suppressed by
using Notch filters, and the measured
value of the real line in Fig.7 indi-
cates the actual system response finally
stabilized. In the 1lower frequency
range, the measured characteristic is
well simulated by the calculation indi-
cating the effectiveness of the
presented design method. )
In the ralization of QCPI method,
estimated displacement signals at the
bearing are formed and input to the
compensation circuit. It is an effective
design rule to modify the compensation
circuit watching the real system charac-
teristic by the estimated signals[7].

8. Conclusion

(1)QCPI(Quasi-Colocation Pseudo-Inverse)
method 1is effective for the basic
design of flexible rotors.

(2)Selective Eigenvalue Move method
works. well for the fine modification
of eigenvalues.

(3)The effectiveness of these techniques
were proved experimentally.

(4)Finer modelling of the frequency
characteristic of control components
is necessary for the precise
estimation at high frequency range.
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Appendix A Transfer Matrix of a shaft

with variation of section

When there is no variation of section
or no change in shaft diameter in Fig.2,

Fk+1 1 0 0 O)(Fk-
Mg+1|= 1k 1 0 O |Mk-=
By +1 1v2/2ExIx 1k / Exlk 1 O0f}e«x
xr+e1) |Lk3/6ExIx  1k2/2Exlk lk 1)1«
This relation is expressed as
Zk+1 = Tk Zk
T« is the transfer matrix of a shaft
section with constant diameter. Now

considering the variation of diameter,
Ty 1is divided into several parts each
representing a shaft section with
constant diameter ;
Tk = Tkom Tkym-1 =" Tk,

Then this represents the transfer matrix
of the whole shaft section with diameter
variations which is wused in equation

(1).

Appendix B Moore-Penrose's Pseudo-
Inverse [2]

For a column-regular matrix B ;
B_N = (BTB)—i BT

For a row-regular matrix C ;
gn = gT (@T)—l

Appendix C Approximation by least
square method

consider the following simultaneous
linear equations with the number of
equations n larger than the number of
unknowns n' ;

e

20 j X = b (i-= 1,n )

i=1
Define the estimating function as ;

n n'
f =% {((SHk;x;-bk)/nCk}?
k=1 j=1
where nCyx is the binomial coefficient
and nCk=n!/(n-k)!k!.
Then by partial differentiation ;

n n'
gf/axj = Zzuki(Z“kam—bk)/an =0

k=1 m=1 ( J' =l,n'
Therefore the following equations

concerning x; are obtained ;

(S i@k i/ nCr{x;Y = {SKkibk/nCx}
k=1 k=1
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