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Abstract

Numerous commercial turbomachinery applications utilizing active magnetic bearings are now
being undertaken by several manufacturers. A minimum standardization of performance
characteristics is proposed in this paper to minimize the difficulty encountered by turbomachinery
manufacturers confronted with a new bearing technology. The difficulty of characterizing performance
of the complete magnetic bearing system without the rotor is circumvented in this paper by suggestions
for specification of bearing static and dynamic load capacity and vibration response of the completed

installation.

1. Introduction

Like conventional bearings, active magnetic
bearings’ characteristics can be sufficiently
described to allow assessments of rotor-bearing
performance via rotordynamic analysis.
Approximate equivalent stiffness and damping
coefficients can be developed for magnetic bearings
that allow conventional rotordynamic analyses
including undamped and damped critical speed
analyses and forced response analyses to be
conducted. Although this approach allows some
insight into rotor-bearing system performance, it
partially masks the true nature of magnetic
bearings as feedback control systems.

Since the objective of magnetic suspension
applications in rotating machinery is to stably
locate the rotor during machine operation, a
magnetic bearing system is, in essence, a position
control system that suffers some complications
from rotor rotation. The accuracy of the rotor
position control is determined by position sensor
measurement accuracy, controller gain, controller
bandwidth, and disturbance forces acting on the
rotor. However, the fundamental challenge to
successful magnetic bearing application is
achievement of system stability. Stability of the
rotor-bearing system is related to the vibration
performance of the machine, an important
consideration in specification of any type of bearing
system.

Accordingly, it would seem that the most
meaningful specification of magnetic bearing
system performance would be in classical control
parameters related to frequency response, relative
stability, and stability robustness to parameter
variations. However, this requires complete
knowledge of the characteristics of the
turbomachinery manufacturer’s rotor which
comprises the plant of the feedback control system.

Furthermore, the controller actuator, the magnetic
bearing, is open-loop unstable. The rotor itself may
also be open-loop unstable for high-speed
operation and this condition generally leads to a
minimum and maximum controller bandwidth
requirement for achievement of stability over the
operating speed range.

The subsequent discussion is directed at an
examination of the characteristics of magnetic
bearing systems important to overall performance
of the rotor-bearing system. This will permit
development of performance criteria for inclusion
in a standard specification for magnetic bearing
application in turbomachinery. Not considered in
the following are the physical construction features
of the bearing actuators and the controller that will
have important effects on system reliability.

2. Discussion

Open-Loop Behavior of Plant

For a general rotor system, a minimum of five
axes of motion control are required: four axes of
radial motion control, two at each of two radial
bearings, and an axial axis of control provided by a
thrust bearing. The basic system that is required
for active control of one axis of the rotor will consist
of at least one state variable sensor, a magnetic
control coil, a coil driver, and the electrical
network to connect it all together. These elements
introduce their own individual characteristics to
overall system performance including frequency
response limits, eddy current losses, and
saturation which must be accounted for in the
overall specification of the system. In addition,
mechanical resonances of the stator and rotor will
interact with the performance of the control
system.



Specification of magnetic bearing system
performance parameters starts with a discussion of
the frequency behavior of the plant of the feedback
control system. The components in the upper half
of Fig. 1 define the plant in one axis of control as
consisting of the suspended rotor, the magnetic
negative stiffness, the magnetic bearing, and the
power amplifier.

Note that there are two types of disturbances
acting on the plant: E; and E,. The first, Ej, is the
external forces acting on the rotor including
rotating unbalance caused by the misalignment of
elastic and inertial axes and aerodynamic or
hydrodynamic forces. These forces are summed
with the magnetic bearing control forces before
passing through the rotor to affect the rotor output
state variable of position. The second type, E,,
usually ignored in conventional treatments, is the
measurement disturbance created by an imperfect
state variable measurement. For a position sensor
looking at an imperfect shaft surface, the result is
a corrupted position measurement that consists of
the true center of mass position and components at
harmonics of the rotational speed. This corrupted
measurement is used as a feedback signal for the
magnetic bearing hence producing a disturbance
that excites rigid and flexible modes of the rotor
system.

The power amplifier and the magnetic bearing
have been included in the definition of the plant to
emphasize their influence on the control system
performance. Mechanical resonances in the rotor
are unavoidable and they impose constraints on
the frequency dependent characteristics of the
power amplifier and the magnetic bearing.

The power amplifiers and magnetic bearing
contribute phase lag to the open-loop transfer
function for the plant requiring stabilization at
high frequencies where structural interaction can
occur [1]. Core losses in_the magnetic bearing
contribute to phase Tag by opposing flux changes in
the bearing at a Irequency below that normally
assoclated with an L-R circuit.”  Accordingly, the
bandwidth of the bearing should be as high as
practical as will be shown subsequently. The
magnetic bearing is represented in Fig. 1 as a
single lag with a break frequency of wp, and a roll-
i)ff ghereafter which is first order (slope of -1 or
ess).

The power amplifier is also represented as a
first order lag with a break frequency that should
be as high as practical for best performance.
Furthermore, the coil driver should have a
characteristic which is independent of load
inductance and resistance. Unfortunately, this
constraint is coupled with power limitations and
the complications of design offered by pulse width
modulation of the current to the bearing.
Preferred designs should operate as a true
transconductance amplifier yielding a current
output for a voltage input. The amplifier total
harmonic distortion at rated output should be as

small as possible to avoid nonlinear resonance
effects.

Considering a simple rotor system supported
by an uncompensated magnetic bearing, the
equation of motion for one axis of control is:

mx tkx=f (1)

rotor mass

magnetic bearing negative
stiffness

rotor displacement

external force

where

m
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Equation (1) above applies directly to the axial
control axis. For a radial control direction,
Equation (1) applies if k- is taken as the effective or
combined negative stiffness of all magnetic
bearings in the control direction. Equation (1)
assumes no cross-coupled motion between axes.

In Laplacian notation, Equation (1) can be
expressed as:

ms2 X(s) + k- X(s) = F(s)

X(s) = 1 (2)
F(s) ms2 + k-

where s = jw and the capital letters in functions of
s denote Laplace transforms. Accordingly, the
rotor transfer function, X(s)/F(s), is shown for
simplicity in Fig. 1 as 1/ms2 with negative
feedback of the magnetic bearing uncompensated
negative stiffness. Thus, this representation is
strictly correct for rigid body motion only but
flexible mode effects are added subsequently. The
1/ms2 transfer function shows that the rotor acts as
a low pass filter rejecting high frequency
disturbances.

Flexible mode effects of cross-coupled motion of
real rotor systems can be accounted for by
incorporating multi degrees of freedom and
including gyroscopic and internal damping
parameters in the model. Using complex notation
to allow a more compact form, the equation of
radial motion can be written:

MKz} + [D — joGHz + [K — joD iz} = {f} 3)
where [M] = rotor mass matrix
[D] = rotor damping matrix
[G] = rotor gyroscopic matrix
[K] = rotor stiffness matrix
}f} = rotor external force vector
z} = rotor displacement vector
=[..x%+]yi.. J .. Bi +jxi . T
Xj = translational displacement of the
ith mass along the x- axis
Bi = angular displacement of the ith
mass about the x- axis
yi = translational displacement of the

ith mass along the y- axis




«j = angular displacement of the ith
mass about the y- axis
frequency

(0]

Following the development of Schweitzer [2],
the eigenvalue problem for the above system can be
formulated. Solution shows that internal damping
can only destabilize if the rotor is spinning.
Backward whirls cannot become unstable, but
forward whirls can become unstable when the rotor
speed exceeds the first flexible mode natural
frequency.

The transfer functions for the flexible mode
resonances can be expressed as [3]:
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where ;i isthe zero of the ith resonance

wpi is the pole of the ith resonance

13 is the damping ratio including

external as well as internal effects

At each resonance there is a gain increase of 40 dB
per decade over a frequency range corresponding to
the pole-zero separation, and a maximum phase
shift of 180° depending on the damping and the
pole-zero separation. This damping can easily
result in a narrow band gain increase of 40 dB or
more.

The complex S plane can be used to'describe the
relative stability of the open- and closed-loop plant,
i.e., before and after compensation. The poles of
the rotor transfer function correspond to the
eigenvalues of the related characteristic equation
for Equation (3); the real part is the damping factor
and the imaginary part is the damped natural
frequency. Stability requires all poles to be located
in the left-half plane (LHP) where the negative
real part of the eigenvalue ensures sufficient
damping.

The rigid body transfer function of 1/ms2 results
in two poles at the origin of the complex S plane.
These rigid body poles may migrate from the origin
due to gyroscopic effects as rotational speed is
increased. Generally, the rotor transfer function
will also contain a number of complex conjugate
poles and zeros as described by Equation (4). These
poles and zeros tend to migrate toward the right-
half (RHP) of the complex S plane with increasing
rotor speed due to the rotor cross-coupled damping
effects. Thus, they can easily contribute to rotor
instabilities. Fig. 2 shows a representation of the
poles and zeros for a typical open-loop rotor system
and their direction of travel with increasing speed.

Another important instability in the open-loop
plant is that caused by the uncompensated,
negative stiffness of the magnetic bearing itself.
This aspect of magnetic bearings has been well
documented in the literature (e.g., [4]).

The force developed by a magnetic bearing
operating on a rotor through an air gapis:
aF aF

F= —al + — 3 )
al x ©
where x = rotor displacement.
I = bearing current

or expressed as a stiffness,
K=K" + K~ 6)

where the first term is the bearing positive
“current” stiffness and the second term is the
bearing negative “position” stiffness caused by the
increasing attractive force as the gap is reduced.
This must be overcome for stable suspension since
the homogeneous solution to Equation (1) is in the
form of hyperbolic functions indicating that x
grows with time. This can be accomplished for a
given rotor position in the air gap by ensuring that
%e first term in Equation (6) is larger, ie, Kt >

A Bode plot of the above defined plant for a
typical rotor system at zero speed neglecting the
bearing negative stiffness is illustrated in Fig. 3.
These plots are the steady state magnitude and
phase ratios of output position, as produced by an
input sinusoidal voltage, versus the frequency of
input excitation, @. It is easy to show that
inclusion of the bearing negative stiffness yields
undamped poles in the complex S plane. Means of
negating this effect will be discussed subsequently.

At low frequencies, the zero speed plant is
dominated by the rigid body poles with a second
order magnitude roll-off (slope of -2) until the first
flexible.mode resonance shown arbitrarily at 103
rad/sec. The trough of the resonance is caused by
the zero of the resonance transfer function and the
peak of the resonance is caused by the pole of the
resonance transfer function, Equation (4). The
pole-zero combination of the flexible mode
resonance causes a 180° maximum phase shift,
The magnitude slope steepens and the phase falls
off from -180¢ with increasing frequency due to the
simple poles of the amplifier and bearing which
have been placed arbitrarily in Fig. 3 at 104 rad/sec
and 103 rad/sec, respectively. These
characteristics imply that the addition of phase
lead is required to stabilize the system. The
occurrence of additional flexible mode resonances
further complicates the problem of plant
stabilization as will be shown subsequently.

The magnitude plot will be somewhat modified
with increasing speed if cross-coupled damping or
large gyroscopic effects cause migration of the
poles and zeros in the complex S plane. Gyroscopic
effects may cause the system poles and zeros to
move either toward or away from the RHP with
increasing speed indicating a destabilizing or
stabilizing influence, respectively, according to the
values of rotor pular and transverse inertias, rotor
flexibility, and geometric parameters. As the
rotational speed is increased, cross-coupled



damping may cause some forward whirl poles and
zeros of the rotor transfer function to migrate
toward the RHP and the rotor can become open-
loop unstable when the rotational speed equals a
rotor flexible natural frequency. The pole and zero
positions in the complex S plane tend to restrict the
minimum and maximum gain and bandwidth of a
compensating controller as shown by Johnson [5].
Also, the amplifier and bearing bandwidths
introduce further gain and bandwidth restrictions
to the controller.

In summary, plant variations with speed, open-
loop instabilities caused by unfavorable gyroscopic
and internal damping effects, component frequency
response limitations, and structural interactions
combine to make control synthesis of a stabilizing
compensator for a typical rotor system a difficult
proposition.

Controller Requirements

Since the plant comprises an open-loop system
that may have one or more zeros and poles in the
RHP, feedback alone is not sufficient for
stabilization. Some form of series compensation
with lead networks is required for stability. We
are interested in stability at nonsynchronous
frequencies as well as synchronous frequencies.
Furthermore, parameter variations and nonlinear
effects within the system components can be
expected. Therefore, the controller for a magnetic
bearing system has to possess robustness
properties that ensure stability under these
conditions.

Another requirement of the controller is that
the closed-loop system must accommodate
disturbances, E; in Fig. 1, at both synchronous and
nonsynchronous frequencies. Nonsynchronous
disturbances can come from a variety of sources
including coupling misalignment, seal and
impeller hydrodynamic effects, rubs, etc. The
controller must possess good synchronous response
characteristics since the primary exciting
mechanism in most turbomachinery applications
will be mass unbalance. The synchronous response
must be limited by the controller to rotor whirl
amplitudes that are less than the magnetic bearing
air gap. The corresponding synchronous bearing
forces must be consistent with the dynamic load
capacity of the magnetic bearings. Accordingly, a
relatively flat synchronous response is desirable.

As in other position control systems, optimal
control for a magnetic bearing system can
generally be achieved with full state feedback, Fig.
4. However, the rotor state variables of velocity
and acceleration are not naturally accessible in a
magnetic bearing suspension and must be
generated with more hardware than a
displacement feedback system. The result is
additional complexity and cost of the total system.
This problem can be circumvented in digital
control systems by generating state variables with
software.

The negative stiffness of the bearing is a
challenging control problem. Here again, state
variable feedback and digital technology offers a
solution. As shown by Chen [6], a velocity observer
implemented into a model based compensator can

recover rotor velocity without differentiation of the
rotor position signal and ensure system stability
despite the magnetic bearing negative stiffness.

Alternatively, flux feedback can minimize the
negative stiffness with less control complexity.
Since the magnetic force of attraction is given by:

B’S
2}10
where B = magneticinduction
S = bearing projected surface area

Bo = permeability of free space
it is evident that a linear force vs. rotor
displacement is possible if B~ Vx. This latter
relationship is possible by measuring B. The result
is a bearing force characteristic which is
independent of the bearing air gap; the unstable
effect largely disappears. In fact, reductions in the
negative stiffness on the order of five to ten times
are achievable.

Some bearing designs utilize linearization of
the bearing stiffness by the use of large DC current
biases alone to minimize the effect of negative
stiffness. This scheme does not eliminate the
unstable effect of the negative stiffness and the
remaining nonlinearity introduces resonant
frequencies into the dynamic system which are
subharmonic and ultraharmonic to the main
resonance (pole) predicted on the basis of linear
theory. These nonlinear resonances can cause
further restrictions on stabilizing controllers
particularly when the bearing is operating near
saturation.

A review of the optimal control technologies
seems to indicate that the linear quadratic
regulator (LQR) offers everything desirable in a
magnetic suspension: good stability, robustness,
and flat frequency response properties.
Essentially, this design methodology is similar to
shaping of the open-loop Bode magnitude plots for

performance enhancement. Selection is made of-

the weighting matrices used to express the relative
cost assigned to deviations of the control state from
equilibrium and the relative cost assigned to
control effort. This technique can be applied to
both full state feedback controllers and output
controllers using model based compensators. The
velocity observer mentioned above is an example of
the latter.

The optimal performance of the full state
feedback controller using variable gain to account
for variation in plant with rotational speed appears
ideally suited to magnetic bearing applications.
Nevertheless, as shown by Johnson’s analysis [5]
for his two mass rotor system, output state




feedback using LQR design techniques failed to
provide any real advantage over simple lead-
lag controllers in terms of nominal stability,
synchronous response to measurement error,
synchronous response to mass unbalance, stability
robustness to speed variation, and stability
robustness to variations in structural
characteristics of the rotor.

For all the designs studied by Johnson, the
open- loop RHP poles and zeros placed minimum
and maximum bandwidth restrictions on
stabilizing compensators. The above results can
be expected to apply as well to general rotor
systems with the additional characteristics of
variation in pole frequencies with rotation speed
and additional bandwidth and gain restrictions
caused by higher order structural resonances.
Some rotor systems with large disks can also be
expected to exhibit unstable gyroscopic modes.
Rotors with unsymmetric cross section could be
subject to parametric self-excited resonance
vibration. However, these are all characteristics
that have been successfully addressed in
industrial turbomachinery with lead-lag
controllers for both direct and cross axis
compensation.

Compensation of the typical plant defined in
Fig.s 1 and 3 can be readily achieved with a lead-
lag controller provided special attention is made to
- the flexible mode resonances that fall within the
bandwidth. To provide stability, the controller
gain must be increased to provide a gain crossover
in a region where phase is greater than -1800,
However, the location of the flexible mode
resonances with respect to the low frequency ‘gain
crossover dictates the minimum amount of phase
necessary for plant stabilization.

This condition can be clearly depicted on a
Nichols plot of open-loop magnitude and phase vs.
frequency. In this plot, the critical points where
instability occurs are the multiple origins of -1800
* n 3600 phase and 0 dB magnitude. The gain and
phase margins for relative stability are measured,
respectively, from the phase crossover at -1800 * n
3600 and gain crossover at 0 dB. There may be
multiple crossovers at a single critical point due to
flexible mode resonances.

Each mode affects the magnitude-phase plot by
contributing a counterclockwise loop to the loop
transfer function [3], Fig. 4 . A phase stabilized
mode is one which for arbitrarily small structural
damping ratio is closed-loop stable regardless of
how high the loop gain is raised; the mode “loop”
never crosses the -1800 * n 3600 line, even for zero
damping. A gain stabilized mode is one which is
closed-loop stable for the actual loop gain and
damping ratio, but can become unstable if the gain
is raised or the damping ratio is lowered; the mode
loop crosses the -1800 + n 3600 line if damping
ratio is sufficiently small.
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The Nichols plot of Fig. 4a was developed for a
typical rotor such as shown in Fig. 3 after simple
lead-lag compensation. Several flexible modes are
depicted. The plot shows the need to stabilize mode
2 by providing additional phase lead to compensate
for the amplifier and bearing phase lag thereby
avoiding the phase crossover at the mode
resonance frequency. The result after higher order
lead compensation is shown in Fig. 4b. A phase
crossover with reasonable gain margin has been
provided between resonances (after mode 2 in Fig.
4b). Higher order modes of large magnitude also
Eg)ve sufficient phase margin (e.g., mode 4 in Fig.

As discussed above, a simple lead cell is
sometimes insufficient to provide acceptable
stability margin and higher order lead
compensation is necessary. This results in greater
loop gain which can destabilize gain stable modes
(e.g., mode 3 in Fig. 4b with a lower damping
ratio). There is a ready solution to this problem
which is used all the time by the authors’ company
and affiliates: a notch filter to remove the gain at
the offending frequency with a minimal increase in
the overall gain. Mechanical dampers mounted to
the shaft have also been successful in attenuating
these resonances at high frequencies thereby
stabilizing the offending mode.

The decision to employ an output controller, be
it a lead-lag or a model based compensator using a
velocity observer, still requires consideration of the
feedback measurement system--the position
sensor. The sensor must have good sensitivity,
temperature stability, high signal to noise and
harmonic rejection characteristics, and high
linearity with respect to changes in the magnetic
bearing air gap. Magnetic bearing systems have
been built with capacitive, eddy-current, optical,
and inductive devices, but the success of these
systems in industrial environments varies in part
with the extent to which the above criteria are
satisfied.

The inductive sensor with individual coil
elements bridged around the rotor for rotor
surface harmonic rejection has performed
admirably in turbomachinery applications. This
sensor intrinsically minimizes the E, disturbance
in Fig. 1 due to an imperfect shaft surface. Output
disturbances, due to misalignment of the sensor
measurement axis and the bearing axis must be
minimized by good machine design practice. This
generally requires direct mounting of the sensor to

the bearing assembly. Also, where
electromagnetic interference is a concern such as
in motors and generators, shielding can be
implemented to ensure a clean position sensor

signal.

Minimum acceptable performance of sensors for
both radial and axial position measurement are
listed in the summary section which follows. The
phase lag characteristics of sensors, particularly
inductive types, do not compromise the design of




stabilizing controllers since these are low power
devices that can be readily compensated.

Previous considerations of the characteristics of
stabilizing controllers assumed colocation of the
bearing and sensor. Most practical system will
have sensors and bearings separated by an axial
dimension along the length of the rotor.
Depending on node locations of resonant
frequencies relative to the bearing and the sensor,
the sensor gain may be affected. Maslen and Bielk
[7] show that the effect of sensor noncolocation is
generally to reduce the stability of some higher
order modes and increase the stability of lower
order modes.

Bearing System Load Capacity

The magnetic bearing actuator design must be
consistent with frequency and voltage
characteristics of the controller in order to develop
peak dynamic forces as required over the control
bandwidth to maintain contact free suspension.
Furthermore, this must be done within current
limitations without excessive bearing inductance.

For a four quadrant bearing system, two
different operating modes are possible: Class A
and Class B. Class A takes advantage of opposing
quadrants to react the dynamic load.

As shown by Bornstein [8], neglecting the
reluctance of the magnetic core , this configuration
can develop a peak dynamic force given by:

I \Y% S. N

max max i pp

F=———7—"7"7"— 8)
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where Ipax = maximum current available

from amplifier
Vmax = maximum voltage available
from amplifier

Si = inductive area of a single
magnetic bearing pole

Npp = number of pole pairs in the
bearing quadrant

S = grojected area of magnetic
earing quadrant

€0 * = magnetic bearing air gap

o = frequency of disturbance
and all variables are in consistent MKS units.

Implicit in the development of the above is that
the saturation current of the bearing coincides
with the amplifier current rating; a usual
condition for cost effective designs.

Class B control utilizes current modulation to
only one quadrant to react to the dynamically
varying load while the opposing quadrant is
energized with a small bearing DC current. For
horizontal installation, only the upper quadrants
modulate the load. The maximum dynamic force
developed in a Class B configuration neglecting
magnetic core reluctance is [8]:

1 V. SN

max max i pp
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where the factor of safety over the static load
rating, Xs, has been purposely introduced to
illustrate the reduction in dynamic load capacity
incurred by overspecification of Xs.

Recommendations for minimum load capacity
specifications are contained in the summary.

Overall System Performance Specification Using
Vibration Standards

Ideally, performance criteria for a magnetic
bearing controller could be specified by the
classical control system specifications of gain and
phase margin (relative stability), synchronous
frequency response, and stability robustness to
plant parameter variations. However, as can be
concluded from the above discussion, there are a
multitude of options for stabilizing controllers and
actuator designs for a given rotor system.
Identification of suitable criteria is difficult in
rotor- bearing systems where rotor open-loop
behavior will vary widely across the class of
turbomachinery and instability can arise from
various sources. This condition makes
specification of controller performance
requirements difficult.

The problem of practical system performance
specifications can be resolved by resorting to the
traditional frequency response parameter used for
performance evaluation of turbomachinery rotor
bearing systems: vibration amplitude. Although
vibration standards are often invoked to minimize
damaging dynamic loading of conventional bearing
systems, satisfaction of appropriate vibration
standards for magnetic bearing systems ensures
that the previously mentioned attributes of closed-
loop stability at synchronous and nonsynchronous
frequencies have been met, and that the system is
relatively insensitive to disturbances. However,
vibration standards do not explicitly indicate
relative stability margins and they do not ensure
stability robustness. They also unfairly burden the
magnetic bearing manufacturer with the task of
demonstrating acceptable performance over a
rotor system for which he is not completely
responsible. Nevertheless, with proper rotor
design, manufacture, and balancing, the authors’
company has found it possible to meet rigid
vibration requirements.

In fact, the proposed vibration standard is the
same to which a wide class of turbomachinery are
now accepted--the American Petroleum Institute
(API) Standards. Fig. 5 shows the various
standards for motors (API 541), pumps (API 610),
centrifugal compressors (API 617), gas turbines
(API 616), and steam turbines (API 611). The
herein proposed standard corresponds to API 617
and is cross-hatched in the figure. This standard
requires that vibration be limited to 2780/Vf pm or




50 pm, whichever is less, where f is the frequency
in cpm. The authors’ company has been able to
meet these requirements in all of its installations
provided the customer’s rotor is multiplane
balanced to a minimum of the ISO 1940 standard
for the appropriate class of machinery.

3. Summary

The unique performance aspects of magnetic
bearing applications to turbomachinery have been
reviewed in the context of actively controlled rotors
to identify the salient performance requirements
that need to be identified by machinery
manufacturers in the specification of magnetic
bearing systems for their use. While these
specifications cannot be totally definitive, they do
provide the genesis of a common specification that
will help ensure satisfactory performance of the
rotor-bearing system.

The results of this review and recommended
specification criteria can be summarized as
follows:

The bearing system shall permit the driven
equipment to run continuously at all speeds within
the operating speed range at the maximum
unbalance permitted by ISO 1940 for the
appropriate class of rotor without exceeding a
double amplitude of vibration measured adjacent
to the individual bearings of 2780/Vf pm or 50 pm,
whichever is less, and where f is the frequency of
vibration in cpm. The controller may use analog or
digital technology of any of a variety of algorithms
provided it meets the above requirements for
vibration and is stable (repeatable) with time.
Output or full state feedback using position,
velocity, current, flux, or force is permissible
provided it meets the above requirements for
vibration and is stable with time. Power amplifiers
shall be low distortion, linear or switching type
with a bandwidth consistent with the above
vibration requirements. Bearing bandwidth shall
be consistent with the above vibration
requirements.

The load capacity of the bearing system shall be
a minimum of the total of static plus dynamic loads
for the application where static and dynamic loads
are as defined below. Static loads consist of weight
and steady state aerodynamic, hydrodynamic, or
electromagnetic loads of the driven equipment and
dynamic loads consist of varying components of the
above, plus unbalance loads of the driven
equipment. The required dynamic capacity of
radial bearings is specified at synchronous
frequency and shall be a minimum of 2.5 times the
appropriate ISO grade to which the rotor is
balanced. The required capacity of axial bearings
shall be a minimum of the total of specified static
and dynamic loads as indicated above.

The radial position sensors shall feature a
linearity and sensitivity that is independent of
environmental temperature and that is consistent
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with stable operation of the magnetic bearing-rotor
system. This generally requires linearity for
radial sensors to within 2% over the magnetic air
gaps and a minimum sensitivity of 10 V over the
air gap involved. These requirements may be
relaxed for axial sensors. To reduce plant
measurement disturbance, the mounting of the
radial position sensors shall ensure a concentricity
with respect to the radial bearing bore of 50 pm per
meter of bearing diameter with a lower limit of 15
pm.

. Not previously addressed in this paper, but also
1mportant:

All magnetic bearing components shall be
compatible with the specified application operating
environment of temperature, pressure, humidity,
and process fluid. Temperature increase due to
joule, hysteresis, eddy current, and windage losses
within the magnetic bearing components shall not
unduly compromise the performance or the life of
the bearing system. Also, operating stress levels
due to centrifugal, thermal, electromagnetic, and
mechanical loads shall not unduly compromise the
performance or the life of the bearing system.

Before design approval, the magnetic bearing
manufacturer should be required to conduct and
present sufficient analyses to demonstrate that
the above requirements are met. However, the
equipment manufacturer is ultimately responsible
for satisfactory performance of the complete
machine with the magnetic bearing system. To
this end, the magnetic bearing manufacturer
should supply this necessary performance data to
enable the equipment manufacturer to make this
determination and release the magnetic bearing
vendor to proceed with the manufacture and
delivery of the complete magnetic bearing system.
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