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Abstract

Stable operation of magnetically levitated systems requires feedback control. This paper studies tuning
methodologies for the popular stabilizing PID controller which generates force/current references for the inner
control loop. The pole placement method and frequency design loop shaping methods are compared in terms of
their required tuning rules. Since the control system has five parameters, the tuning process is under constrained
since the system only has two parameters: rotor mass and displacement unstable stiffness. Therefore, system
performance objective metrics are defined and a case study multi-objective optimization is performed to find
Pareto optimal tunings. Six tuning regions are identified and the salient characteristics are given and transformed
into tuning rules. For example, it is found that high phase margin does not necessarily translate to robust control,
nor a highly damped system response. Future magnetic levitation control designers can use the practical rules
herein as a guide for creating robust and high-performance feedback PID controllers for magnetic levitation.
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1 Introduction

(a)

(b)

Fig. 1: Non-contact motor
with: (a) AMBs, (b) BMs.

(Chiba et al. 2005)

Magnetic levitation has been applied to rotating machinery where either ac-
tive magnetic bearings (AMBs) or bearingless motors (BMs) are used, see Fig. 1.
Both AMBs and BMs can be viewed as generic force actuators and made to accu-
rately create a desired force. To achieve stable levitation, motion controllers use
displacement measurements to compute a force command which the AMBs/BMs
produce. There are potential complexities to the motion control algorithm, e.g.,
speed-dependent bearing stiffness/damping to handle the dynamics of flexible
rotors, co-location issues between the force production and sensor planes, and
handling imbalance in the rotor assembly. While complexities may abound for
real-world systems, this paper is devoted to understanding the tuning of classi-
cal PID controllers for the linear magnetic levitation mechanical plant with mass m
and unstable displacement stiffness (positive number) kδ. While the core theoretic
tuning concepts are known in the literature, the goal of this paper is to present a
practical and systematic methodology to implement this theory in real systems.

2 Control Structure

Figure 2 shows control of AMBs/BMs where an inner force (current) regulation loop produces a force com-
mand F∗

c with high bandwidth. The outer motion control loop is used to stabilize the system by measuring rotor
displacement δ and computing the force reference F∗

c for the inner loop. The starred signals (e.g., δ∗) denote
references and i is the current, Fdis is the disturbance force, and kf is the bearing current stiffness constant. The
motion controller is denoted Gc(s), the current (force) regulation loop dynamics are modeled as GCR(s), and the
magnetic levitation plant is denoted Gp(s). These transfer functions are assumed to be in the form:

Gc(s) = KP +
KI

s
+KDs

(
ωD

s+ωD

)
GCR(s) =

ωci

s+ωci
Gp(s) =

1
ms2 − kδ

(1)
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Fig. 2: Single DOF magnetic levitation control structure showing the AMB or BM as the force actuator.

The controller Gc(s) is classical PID with an additional low-pass filter (pole) inline with the derivative term to
limit the effects of sensor noise. The current regulator GCR(s) is modeled as a first-order low-pass filter (pole)
at bandwidth ωci. The plant Gp(s) is modeled as a mass-spring system with destabilizing spring stiffness; both
AMBs and BMs behave according to this model for small displacements from center (Chiba et al. 2005, Maslen
et al. 2009). The plant Gp(s) can also be written as two poles where one is in the right-half plane (i.e., unstable)
and is located at unstable pole frequency ω0 =

√
kδ/m. The value of ω0/2π is typically 20-50 Hz.

3 Tuning Methods

There are several studies published related to controller tuning in magnetic levitation systems. Tuning for PID
and PD controllers is investigated in (Bleuler et al. 1994, Anantachaisilp et al. 2012); linear quadratic regulation
(LQR) is studied in (Brunet & Rioland 1990, Yoon et al. 2012); automated controller design and tuning using µ-
synthesis is investigated in (Sawicki & Maslen 2008). These prior studies give several frameworks for reasoning
through controller tuning, however, these studies do not give simple analytical equations and “rules of thumb”
that control designers can use when approaching controller gain selection for system bring-up. In this paper,
two practical tuning methodologies broadly applicable to SISO magnetic levitation controllers are investigated:
(i) pole placement and (ii) frequency domain loop shaping.

Referring to Fig. 2 and (1), a complete controller tuning can then be described as x ∈ R5 where x =
[KP,KI,KD,ωD,ωci] and KP, KI, and KD are the PID gains; ωD is the derivative-term (d-term) filter bandwidth;
and ωci is the inner current regulation bandwidth. In practice, ωci < ωci,max and ωD < ωD,max. The filter band-
widths must be high enough so as to not impede stable controller operation.

3.1 Pole Placement Method

It is well known that the closed-loop poles of a system directly impact the system behavior, such as deter-
mining bandwidths, settling times, and transient oscillations. Since this system is controllable, linear systems
theory states that the closed-loop poles can be placed arbitrarily through gain selection. The task of the control
designer is then to select appropriate locations for the poles such that the final system behaves as desired. The
following steps are required to algebraically solve the pole-placement problem. First, the open-loop OL(s) and
closed-loop CL(s) transfer functions of the 1-DOF control system can be derived as:

OL(s) =
kf

k̂f
Gc(s)GCR(s)Gp(s), CL(s) =

δ(s)
δ∗(s)

=
OL(s)

1+OL(s)
=

A2s2 +A1s+A0

s5 +B4s4 +B3s3 +B2s2 +B1s+B0
(2)

A generic polynomial P(s) of equal order to the characteristic polynomial (denominator of CL(s)) is defined:

P(s) = (s−a)(s−b)(s− c)(s−d)(s− e) = s5 +P4s4 +P3s3 +P2s2 +P1s+P0 (3)

The coefficients of the characteristic polynomial and P(s) are equated: Pk = Bk for k = 0 . . .4. This forms
five equations with five unknowns. The five unknowns are the controller gains x = [KP,KI,KD,ωD,ωci] which
can be found by solving the system of equations, i.e., x = f (a,b,c,d,e). Due to the fifth-order system, it is
recommended to use a symbolic math package to solve for x.
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3.2 Frequency Design Method

The frequency design method is an alternative way of reasoning about the tuning of the PID controller. By
studying the open-loop transfer function OL(s) and viewing the controller Gc(s) in pole-zero form, Bode plot
analysis can be readily used, i.e., metrics like gain/phase margin and gain/phase crossover frequency. The
PID controller from (1) can be rewritten in pole-zero form as (4) where there are two zeros at frequencies ωz1
and ωz2, one pole at frequency ωD, one pole at the origin, and gain Ko. To tune the control system using the
frequency design method, the control designer must specify five metrics: phase margin φPM, gain crossover
frequency (i.e., controller bandwidth) ωc, one of the two zeros ωz1, pole ωD, and current regulator bandwidth
ωci. Based on these inputs, the second zero ωz2 is computed to achieve the desired phase margin φPM and the
gain Ko is computed such that |OL( jωc)|= 1, see the expressions from (5).

Gc,zpk(s) = Ko
(1+ s

ωz1
)(1+ s

ωz2
)

s(1+ s
ωD

)
where KP =

(
1

ωz1
+

1
ωz2

− 1
ωD

)
Ko, KI = Ko, KD =

Ko

ωz1ωz2
− KP

ωD
(4)

ωz2 =
ωc

tan
(

φPM + π

2 − atan( ωc
ωz1

)+ atan( ωc
ωD

)+ atan( ωc
ωci

)
) , Ko =

1∣∣Gc( jωc)
∣∣∣
Ko=1

∣∣∣∣GCR( jωc)
∣∣∣∣Gp( jωc)

∣∣ (5)

3.3 Required Tuning Rules

The process of using either the pole placement method or the frequency design method simply requires
evaluating closed-form expressions to solve for the controller gains. However, both methods require the con-
trol designer to specify five tuning “rules of thumb” to fully constrain the math. The remainder of this paper
investigates how to reason about “good” tuning rules.

4 Tuning Rules for PID Controllers

This section explores trade-offs in system performance between tunings with the goal of presenting guide-
lines for selecting tuning rules which give optimal controller performance for both the pole placement and fre-
quency design methods. Numerical methods combined with an evolutionary algorithm are used to search the
magnetic levitation controller tuning design space to identify Pareto optimal tuning approaches.

4.1 Controller Optimization Formulation

The controller performance is evaluated with three objectives (to maximize):

• O1: phase margin φPM—generally desired in control systems and helps ensure stability even when un-
modeled dynamics are present, for example, eddy currents which limit achievable force bandwidth.

• O2: allowable parameter error (±) in m, kδ, or kf before closed-loop instability—all real-world systems
have some degree of uncertainty in plant parameters which the controller must tolerate.

• O3: 1
∥δ(s)/Fdis(s)∥∞

, i.e., the lowest dynamic stiffness value over all frequencies—since magnetic levitation
systems only respond to force disturbances, this term denotes the effective controller effort.

Three constraints are enforced: O2 > 10%, ωci ≤ ωci,max = 2π× 1500 Hz, ωD ≤ ωD,max = 2π× 800 Hz. The
plant studied has m = 1 kg and ω0/2π = 50 Hz. The optimization procedure uses a population-based multi-
objective evolutionary genetic algorithm. Each individual in the population maps to one set of tuning gains.
The optimization free variables are the s-plane location of the five closed-loop poles from Section 3.1. Three
optimization cases are performed: (1) all real poles, (2) three real poles with one pair of complex conjugate
poles, and (3) one real pole with two pairs of complex conjugate poles. The genetic algorithm was run until
convergence, i.e., the Pareto front remained static over multiple generations. Multiple optimization runs were
conducted with random initial populations to ensure global optimal solutions.

3



The 18th International Symposium on Magnetic Bearings Paper Number: 449327

20 25 30 35 40 45 50 55 60 65

10

20

30

40

50

60

70

80

0

0.5

1

1.5

2

2.5

3

3.5

all real

1 complex conj. pair

2 complex conj. pairs

O1: Phase Margin (◦)

O
2:

M
ax

im
um

±
P

ar
am

et
er

E
rr

or
B

ef
or

e
In

st
ab

ili
ty

(%
)

O
3:

Lo
w

es
tD

yn
am

ic
S

tif
fn

es
s

(N
/µ

m
)

Region 1

Region 2

Region 3

Region 4

Region 5
Region 6

(a)

20 40 60

20

40

60

80

20 40 60

20

40

60

80

20 40 60

20

40

60

80

O1: Phase Margin (◦)

O
2:

M
ax

im
um

±
P

ar
am

et
er

E
rr

or
B

ef
or

e
In

st
ab

ili
ty

(%
)

All Real Poles

1 Complex Conj. Pair

2 Complex Conj. Pairs

Region 1

Region 2

Region 3

Region 4

Region 5

Region 6

(b)

10
0

10
1

10
2

10
3

-60

-40

-20

0

20

40

60

80

10
0

10
1

10
2

10
3

-270

-180

-90

10
0

10
1

10
2

10
3

-40

-20

0

20

10
0

10
1

10
2

10
3

-270

-180

-90

0

0 50 100
0

20

40

10
0

10
1

10
2

10
3

10
0

10
1

10
2

Open-Loop Bode Plot Closed-Loop Bode Plot Step Response of Fdis = mg

Dynamic Stiffness

Frequency (Hz) Frequency (Hz)

Time (ms)

Frequency (Hz)

|O
L
(s
)|

(d
B

)
∠

O
L
(s
)

(◦
)

|C
L
(s
)|

(d
B

)
∠

C
L
(s
)

(◦
)

F d
is

S
te

p
R

es
po

ns
e

O
ve

rs
ho

ot
(µ

m
)

|F
di

s(
s)
/δ
(s
)|

(N
/µ

m
)

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

(c)

Fig. 3: Optimization Pareto fronts. Each marker denotes one controller tuning set. (a) Combined global Pareto
front; (b) Individual Pareto fronts. (c) System response for the marked tunings from (b).

Region
ωc/2π

(Hz)
φPM
(◦)

ωz1/2π

(Hz)
ωz2/2π

(Hz)
ωD/2π

(Hz)
ωci/2π

(Hz)
−a/2π

(Hz)
−b/2π

(Hz)
−c/2π

(Hz)
−d/2π

(Hz)
−e/2π

(Hz)

1 449 23 74.2 + j57.4 ω
†
z1 769 1386 1714.8 132.1 + j483.1 b† 87.6 + j65.1 e†

2 358 30 66.6 + j39.0 ω
†
z1 781 1432 1700.0 172.5 + j382.3 b† 84.4 + j43.1 e†

3 242 35 13.6 114.6 794 1393 1588.1 299.3 142.2 + j195.7 c† 15.0
4 141 53 9.0 41.5 797 1213 1388.9 375.4 200.7 22.4 + j5.9 d†

5 192 44 22.4 64.2 800 1412 1584.5 234.2 233.0 131.2 28.8
6 152 55 5.5 42.8 798 1368 1526.1 349.7 247.0 33.6 9.7

Table 1: Summary of selected Pareto optimal tunings denoted in Fig. 3b.
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Fig. 4: Trends in Pareto optimal tunings vs. PID controller bandwidth, i.e., gain crossover frequency ωc.

4.2 Optimization Results

Fig. 3 shows the Pareto fronts from the controller tuning optimization studies. Fig. 3a shows the global Pareto
front while Fig. 3b shows the Pareto fronts from each case. There are six regions labeled on the Pareto fronts
based on the natural segmentation of the results, each resulting in different system performance. The starred
points from Fig. 3b are evaluated and the response is shown in Fig. 3c and Table 1. Fig. 4 shows trends in
control metrics across Pareto optimal tunings compared to the PID controller bandwidth ωc. Fig. 4a shows the
objectives O1 and O3. It is seen that the control bandwidth ωc is proportional to the lowest dynamic stiffness,
and for a given ωc, the case of two complex conj. pole pairs has worse stiffness compared to only one complex
conj. pole pair. However, with two complex conj. pole pairs, the controller can be tuned to bandwidth/stiffness
values far beyond what is possible with only one complex conj. pole pair. The phase margin φPM degrades with
increasing control bandwidth ωc. Fig. 4b shows the filter bandwidths for the d-term pole ωD and current regulator
ωci. The optimization has pushed the d-term filter bandwidth to its limit for many cases, however, this is not true
for the current regulation bandwidth. The controller zero (ωz1, ωz2) placement is given where the pure real zeros
are shown in Fig. 4c and the complex conj. zeros are shown in Fig. 4d.

4.3 Controller Tuning Regions

The characterization of each of the six tuning regions is compared to give tuning recommendations such
as the form of the closed-loop poles and the placement of the PID controller zeros. In this section, the closed-
loop poles [a,b,c,d,e] are assumed to be sorted by increasing real part, i.e., ℜ(a) ≤ ℜ(b) ≤ ℜ(c) etc. For
all tunings, the fastest pole a is purely real and is spaced far from the next pole b, i.e., |ℜ(a)| ≫ |ℜ(b)|. The
placement of a is set according to the current regulation bandwidth limit ωci,max, however, |a| ≠ ωci,max since the
closed-loop and open-loop poles are not equal.

4.3.1 Regions 1 and 2—two complex conjugate closed-loop pole pairs

Regions 1 and 2 are characterized by the controller zeros—in the pole-zero form from (4)—being complex
conjugates, i.e., ωz1 = ωz1,r + jωz1,i and ωz2 = ω

†
z1. The frequency design method tuning equations presented

in Section 3.2 do not handle complex conjugate controller zeros, however, the pole placement method from
Section 3.1 inherently does. For all tunings from both Regions 1 and 2, the slower pair of complex conjugate
poles (i.e., d and e) are located close to the complex conjugate controller zeros, thus achieving partial pole/zero
cancellation. By doing this, the system response has no noticeable oscillations, even though the closed-loop
poles consist of two pairs of complex conjugates, and the faster pair has no zero cancellation effect.
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4.3.2 Regions 3 and 4—one complex conjugate closed-loop pole pair
Region 3 is characterized by the closed-loop poles c and d being the complex conjugate pair, i.e., the slowest

pole e is purely real. In other words, as sorted, c = cr + jci and d = c†. In the pole-zero controller form from
(4), all tunings in Region 3 have purely real controller zeros, i.e., ωz1,ωz2 ∈R. Furthermore, the controller zeros
are placed on either side of the plant unstable pole ω0, i.e., ωz1 < ω0 < ωz2. Region 4 is characterized by
the closed-loop poles d and e being the complex conjugate pair, i.e., the three fastest poles are purely real:
[a,b,c] ∈ R. In other words, as sorted, d = dr + jdi and e = d†. Traversing Region 4 from lower to higher
phase margin, the poles d and e migrate towards the imaginary axis. In the region with highest phase margin—
approximating where φPM > 60◦—the complex conjugate poles dominate and induce excessive oscillations in
the system response, even though phase margin is maximized. This counters the common intuition that higher
phase margin results in a more damped response and is always better.

4.3.3 Regions 5 and 6—all real closed-loop poles
Region 5 is split in two sub-regions based on complex conjugate or purely real zeros. Traversing Region 5

from higher to lower phase margin, the zeros start as purely real and enclose the slowest closed-loop pole e and
the plant unstable pole ω0, i.e., ωz1 < |e|<ωz2, ωz1 <ω0 <ωz2. Traversing from the region limit of approximately
φPM = 44◦ to φPM = 41◦, the controller zeros come together and converge at ωz1 = ωz2 = ω0 = |e|. Then,
continuing to traverse from φPM = 41◦ to the region limit of approximately φPM = 38◦, the zeros split off axis.
With complex conjugate zeros, the closed-loop poles are all faster than the real part of the zeros, i.e., |a| >
... > |e| > ℜ(ωz1) = ℜ(ωz2). This is the only region with complex zeros and no pole/zero cancellation occurs.
Region 6 is characterized by the controller zeros—in the pole-zero controller form from (4)—being both purely
real and both slower than the plant unstable pole ω0, i.e., ωz1 < ωz2 < ω0. Furthermore, the controller zeros are
set where the slowest two closed-loop poles are sandwiched between the zeros, i.e., ωz1 < |d|< |e|< ωz2.

5 Conclusion

This paper investigates analytical tuning for magnetic levitation PID controllers using either pole placement
or frequency design methods. Pareto optimal tunings are identified based on three system performance metrics.
Overall, Fig. 3c presents the range of possible system responses given Pareto optimal tunings with the goal of
users understanding the tuning design space. Users select the desired Pareto optimal tuning based on Figs. 3
and 4, depending on the desired bandwidth (control effort as dynamic stiffness) and robustness to uncertainty
(unmodeled dynamics and/or parameter error). The tuning region is identified from Fig. 3 and Table 1 gives
example controller parameters. The evolution of the pole-zero controller formulation is presented in Fig. 4 for
how to select the controller zeros, pole frequency limits, and phase margin given the desired control bandwidth.
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