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Abstract

Passive magnetic levitation offers advantages in terms of compactness, reliability and cost thanks to the
absence of position sensors, controllers and power electronics dedicated to the rotor suspension. Among these
passively levitated systems, those based on a self-bearing machine relying on electrodynamic effects show an
operating speed range limited to the high speeds given that the restoring forces are created by induced currents.
To address this issue, hybrid active-passive actuation approaches have recently been introduced and consists in
actively controlling the axial position of the rotor through the direct-axis component of the currents flowing in the
combined winding until reaching the threshold speed beyond which passive levitation can be achieved. However,
this active operation requires the addition of an axial position sensor, affecting the benefits related to passive
suspension. In this context, this paper proposes self-sensing techniques relying on state observers to estimate
the rotor axial position and speed on the basis of the machine electromechanical model. Their performance and
robustness are then assessed by means of dynamic simulations.
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1. Introduction

The demand for high power density magnetically levitated systems has led to the development of self-bearing
machines, the latter ensuring both the rotor guidance and drive within a single structure. Generally, the rotor
position is actively regulated on the basis of the currents flowing in the armature winding. Although this offers
advantages in terms vibration management, sensors and power electronics dedicated to the rotor levitation are
required compared to a conventional machine, impacting the cost, compactness and reliability of the system.
The current trend is therefore to replace actively controlled degrees of freedom with passive solutions.

In this regard, recent research have investigated passively levitated self-bearing machines relying on a
combined armature winding both at the theoretical and experimental levels (Van Verdeghem et al. 2019, Rubio
et al. 2023). Nevertheless, the rotor axial levitation arises from induced currents, implying that the restoring force
and the underlying stiffness are small at low speeds and even null at rest. Two different approaches have been
proposed to allow the rotor suspension in the complete speed range, at the expense of lower drive torque and
force capabilities. (Van Verdeghem et al. 2021, Rubio et al. 2021). In both cases, the direct-axis motor current
is regulated to control the axial position of the rotor. A position sensor is therefore necessary to operate the
machine in this active mode, affecting its reliability, compactness and cost.

Self-sensing techniques can be implemented to prevent the addition of this sensor. Among them, high
frequency signal injection is well suited for the start-up and stop phases but observers are preferred at medium
and high speeds to prevent interferences between the injected signal and the force and torque currents.

In this context, this paper introduces observer-based self-sensing techniques, derived from the machine
electromechanical model, to evaluate the rotor axial position and speed. Dynamic simulations are carried out to
validate them and analyse their robustness to parameter errors.
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Figure 1: Self-bearing machine (only one phase represented with p = 3). (a) Passive operation at high speeds.
(b) Active operation at low speeds.

2. Machine Description

This section first describes the structure and the operation principle of the self-bearing machine under study.
The electromechanical model predicting its rotor dynamics in active suspension mode is then presented.

2.1 Structure & Principle

As illustrated in Fig. 1, the rotor of the self-bearing machine is composed of axially magnetised permanent
magnets creating a magnetic field with p pole pairs. The stator consists of two three-phase windings, placed on
both sides of the rotor, whose connection depends on the suspension operation mode.

At high rotor spin speeds, the machine operates in passive mode. As shown in Fig. 1(a), both windings are
connected in parallel to the power supply. In case of rotor decentring z, circulating suspension currents IS are
passively induced in the windings due to an unbalance between their permanent magnet flux linkages, creating
a restoring force, and add to the conventional motor currents IM that generate the drive torque.

At low rotor spin speeds, the machine operates in active mode. Only one three-phase winding is supplied
whereas the other is left open, as represented in Fig. 1(b). In this way, the rotor axial position can, similarly to
the drive torque, be regulated through the motor current IM thanks to the asymmetric structure. Self-sensing
techniques are derived to provide an estimation of the axial position z required to its control while maintaining
the advantages of passive suspension.

2.2 Electromechanical Model

The electrical and mechanical equations governing the axial and spin dynamic behaviour of the self-bearing
machine when operating in active suspension mode are given by:

ud = RiM,d +Lc( ˙iM,d− pωiM,q)+ żKz

√
3
2

mz̈ = Kz

√
3
2

iM,d− kzz−Czż+Fe

uq = RiM,q +Lc( ˙iM,q + pωiM,d)+ pω(Kα + zKz)

√
3
2

Jpω̇ = p(Kα + zKz)

√
3
2

iM,q +Te

(1)

where ud and uq are the direct and quadrature-axis components of the voltage supplied to the armature, R and
Lc are the resistance and the synchronous self inductance coefficient of the windings, Kα is the flux constant,
i.e. the amplitude of the permanent magnet flux linked by the windings in centred position, Kz is the flux gradient,
namely the proportionality factor between the amplitude of the PM flux linkage and the rotor axial position z,
m and Jp are the rotor mass and polar moment of inertia, kz is the axial external stiffness, e.g. generated by
centring bearings ensuring the radial magnetic suspension, Cz is the axial external damping, Fe and Te are the
load force and torque applied on the rotor.
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The electrical equations highlight the linear dependence of the direct and quadrature axis back-electromotive
force terms to the rotor axial speed ż and position z respectively. The latter can therefore be extracted from the
measurements of the currents and the voltage supplied to the armature winding.

3. State Observers

This section describes the state observers developed based on the machine electromechanical model to
estimate the rotor axial position z and speed ż at low and medium spin speeds without any dedicated sensor.

3.1 Axial Position

The proposed position observer structure relies on the electrical equations of a three-phase RL load in
the Park reference frame. Hence, compared to the model (1) governing the self-bearing machine electrical
behaviour, the direct and quadrature electromotive force terms are not taken in consideration:

ud = RiM,d +Lc( ˙iM,d− pωiM,q)

uq = RiM,q +Lc( ˙iM,q + pωiM,d)
(2)

These equations can be rewritten in a linear time-variant state-space form as follows:

ẋ = Ax+Bu
y = Cx

(3)

where the input vector u includes the direct and quadrature voltages, ud and uq, and the state vector x comprises
the corresponding current components, iM,d and iM,q. The latter are measured and thus also constitutes the
output vector y. The matrices A, B and C are given by:

A =

− R
Lc

pω

−pω − R
Lc

 , B =

 1
Lc

0

0
1
Lc

 , C =

[
1 0
0 1

]
. (4)

A conventional Luenberger observer can then be established based on this simplified electrical model to provide
estimates of the state and output vectors, denoted x̂ and ŷ respectively:

˙̂x = Ax̂+Bu+ f(y− ŷ)
ŷ = Cx̂

(5)

The observer equations include an additional feedback term that involves a function f of the error between the
measured y and estimated ŷ output vectors. This function usually applies a significant gain G, the stability of the
corresponding observer being analysed through the analysis of the eigenvalues of the matrix A−GC. Other
forms can also be used, adding e.g. an integral term or including a sign function (sliding mode). In all cases,
this feedback term aims to compensate for errors on parameters of the observed system, on the one hand, but
also for unmodelled phenomena and disturbances, on the other hand. Regarding the machine under study and
assuming that the winding impedance is properly determined, this term therefore provides estimates for both
electromotive forces, denoted êd and êq. The rotor axial position z and speed ż can then be evaluated on the
basis of these estimates by direct identification with respect to the complete model (1):

ẑ =
1
Kz

 êq√
3
2 pω

−Kα

 , ˆ̇z =
êd√
3
2 Kz

. (6)

This method requires an accurate identification of the machine parameters, notably the flux constant Kα and
gradient Kz, to produce precise estimations. In addition, the direct-axis electromotive force ed , that results from
the rotor axial speed ż, is expected to be small due to the low frequency of the axial mechanical oscillations,
leading to an unfavourable signal-to-noise ratio. A specific axial speed observer is then developed in Section 3.2.
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3.2 Axial Speed

The speed observer leans on the following simplified mechanical model predicting the rotor dynamics:

mz̈ = Kz

√
3
2

iM,d− kzz−Czż (7)

This equation does not integrate the axial load force Fe, the latter being considered as an unmodelled distur-
bance. The system under study can be expressed in the state-space form (3) where the state vector x consists
of the rotor axial position z and speed ż while the input vector u solely encompasses the measured d-axis motor
current iM,d . Assuming that the observer (6) properly evaluates the axial position z, its estimate ẑ can be seen
as an indirect measurement and thus constitutes the output vector y. The matrices A, B and C are given by:

A =

[
0 1

−kz

m
−Cz

m

]
, B =

[
0

Kz

m

√
3
2

]
, C =

[
0 1

]
. (8)

Pursuing an approach identical to that adopted for the position, an observer can be constructed based on this
state-space model. In this case, the rotor axial speed ż is an internal state of the observer and is consequently
directly accessible whereas the feedback term provides an estimate for the unmodelled disturbance force Fe.

4. Case Study

This section aims to validate the operation principle of the proposed observers and to assess their robust-
ness to parameter errors. To that end, dynamic simulations are performed on MATLAB SIMULINK in the Park
reference frame on the basis of the electromechanical model (1). A two-level scheme is implemented to control
the machine. On the high level, the rotor axial position z and spin speed ω are regulated based on a PID and a
PI controller respectively. On the low level, PI controllers allow to regulate the direct and quadrature axis com-
ponents of the motor current iM. The case study is conducted on the basis of the reaction wheel demonstrator
described and characterised in (Van Verdeghem & Dehez 2021).

4.1 Principle Validation

Assuming an accurate knowledge of the machine parameters, the validation of the observers is carried out
based on a specific sequence aiming to verify their tracking capabilities. More precisely, the rotor spin speed
ω is first fixed to 1200 (rpm) and then increases up to 1350 (rpm), as shown in Fig. 2(d), while a sinusoidal
axial position setpoint characterised by an amplitude of 0.1 (mm) and a frequency of 20 (Hz), equivalent to a
synchronous disturbance, is imposed. The rotor is subjected to a step of axial disturbance force Fe at 0.125 (s)
as well as to a constant load torque of 50 (mNm).

Analysing first the position observer, Figs. 2(a) and 2(b) illustrate the evolution with time of the direct and
quadrature-axis electromotive forces, ed and eq, and currents, iM,d and iM,q, the dotted and solid lines corre-
sponding to the actual and estimated values respectively. The agreement between them highlights the proper
compensation of the machine electromotive forces provided by the feedback term of the observer and confirms
its operation principle. It can also be noted that, as expected, the direct component ed of the electromotive forces
is extremely low and would therefore be difficult to exploit in a physical system due to noise. Fig. 2(c) depicts
the time evolution of the rotor axial displacement z and its estimate ẑ, calculated through (6), underlining their
accordance and therefore validating the position observer.

Focusing then on the speed observer, Fig. 3(a) represents the time evolution of the axial disturbance force
Fe and its estimate F̂e. It can be concluded that the observer feedback term correctly evaluates the axial load
force throughout the sequence, even though a small overshoot occurs upon the step. Hence, the estimate F̂e

can be exploited for active disturbance rejection control, through a feedforward action in the position regulator
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Figure 2: Position observer validation. (a) Direct and quadrature axis electromotives forces, ed and eq.
(b) Direct and quadrature axis currents, iM,d and iM,q. (c) Rotor axial position z. (d) Rotor spin speed ω.
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Figure 3: Speed observer validation. (a) Axial load force Fe. (b) Rotor axial speed ż.

(Petersen et al. 2023), but also to adapt to the rotor axial position setpoint in active suspension mode so as to
limit oscillations due to the transition to passive operation (Van Verdeghem et al. 2021). Finally, as shown in Fig.
3(b), the rotor axial speed ż is properly estimated, validating the proposed observer.

4.2 Robustness Analysis

The observer robustness is analysed by studying the impact on the estimates of errors on the self-bearing
machine parameters. The spin speed reference is set to 1200 (rpm) and a sinusoidal axial position setpoint is
imposed. Constant axial load force Fe and torque Te, amounting to 1 (N) and 50 (mNm), are exerted on the rotor.

Figs. 4(a) and 4(b) present the time evolution of the estimated axial position ẑ and the estimation error
|z− ẑ| for ±5% variations of the machine parameters. As expected, deviations on the winding impedance
directly affect the estimate êq of the quadrature-axis electromotive force and hence conduces to an offset on the
position. Specifically, an error on the synchronous inductance coefficient Lc has a low influence on the observer
accuracy given that this parameter is small for the ironless structure under study. On the other hand, the resistive
term creates a non-negligible estimation discrepancy due to its dependence to the quadrature axis current iM,q

and the underlying commanded torque, arising from the load Te and spin speed reference modifications. The
incorrect evaluation of the flux constant Kα also generates a significant offset since the variation with the position
of the flux linkages and thus of the resulting electromotive forces, based on which the estimate is established,
is of the same order of magnitude as the error. In contrast, as stated in (6), a deviation of the flux gradient Kz
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Figure 4: Observer robustness to ±5% parameter variations. (a) Position estimate ẑ. (b) Estimation error.

solely leads to a scaling error on the estimate ẑ, thence still allowing to regulate the rotor position in the airgap
centre. Regarding the speed observer, inaccuracies in the machine mechanical parameters do not compromise
the estimate ˆ̇z but directly impact that of the disturbance force F̂e. Similarly, the improper estimation of the axial
position z due to parameter errors has almost no influence on the speed estimate.

It should be noted that the errors considered in this analysis are substantial when the machine parameters
are experimentally identified in the commissioning phase. Moreover, the effect of the temperature on the winding
resistance R as well as the flux gradient Kz and constant Kα can be taken into account in the observer.

5. Conclusion

This paper introduces observer-based self-sensing techniques to estimate the rotor axial position and speed
of self-bearing machines. The former relies on the motor electrical model and more specifically on the induced
electromotive forces whereas the latter takes advantage of the rotor mechanical equation, providing in addition
an estimate for the axial load force. Their operation principle and tracking capability are validated through the
analysis of a specific sequence including speed, load and position setpoint variations. Furthermore, the study of
their robustness reveals in particular that errors on the flux constant and the winding electrical resistance have a
significant impact on the position estimate, highlighting the importance of a proper identification of the machine
parameters. In contrast, parameter errors have a very small impact on the axial speed estimate.

Future works will include the development of a differential control strategy based on the machine electromo-
tive forces, estimated through the proposed observer for the supplied winding and measured for the winding left
open, to regulate the rotor in centred position while suppressing the influence of the flux constant and gradient.
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