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Abstract—Control design for unstable, uncertain, and highly
coupled MIMO (Multiple Input and Multiple Output) systems
such as AMB (Active Magnetic Bearing) systems is extremely
challenging and requires sophisticated synthesis strategies. While
postmodern control methods such as µ-synthesis may be able
to solve such problems, they require an accurate mathematical
model of the system and specialized software tools for the con-
troller synthesis. The resulting control algorithms are typically of
excessively high order and therefore computationally demanding
and challenging to implement.

In contrast, the control culture of the magnetic bearing
engineering community also offers classical, essentially single-
input, single-output (SISO) methods to produce reliable and
robust solutions to a wide variety of control problems. One well-
known approach is translational-tilting modal-transformation
control. However, this approach is limited in cases where the
first bending mode is close to the desired closed-loop rigid body
modes.

This paper describes an approach for hand-synthesized, gener-
alized modal decoupling control design for magnetically levitated
rotors. The basic idea of this method is to use the singular
value decomposition (SVD) to transform the decentralized inputs
and outputs into generalized modal coordinates. This greatly
simplifies the design of the controller, which in turn allows for
much more sophisticated rotor dynamic designs by independently
controlling the decoupled mode. This can be viewed as a
generalization of the known decoupling transformations.

The transformation works with both model- and measurement-
based frequency response functions, in contrast to the known
approaches in the literature, and is shown to excel where common
classical control methods fail. Results and comparisons are
demonstrated by an experimental evaluation of the frequency
domain control performance of a supercritical gas turbine.

Index Terms—MIMO-control, uncertain systems, robust con-
trol, AMB-system, rotor dynamics, Singular Value Decomposition

I. INTRODUCTION

Magnetic bearing systems for rotating machinery are a
prime example of robust MIMO control because they inher-
ently involve many conflicting performance objectives. The
system to be controlled exhibits significant variations in plant
dynamics over the operating speed range, which is commonly
referred to as a plant with high uncertainty. Essentially, this is
the archetypal challenge for robust control techniques such as
µ-synthesis, which, in contrast to classical and modern control
methods, explicitly deals with uncertainty [1]. However, there
are several requirements that must be met, such as

• Availability of a detailed plant model with uncertainty
description

• Proprietary, sophisticated software tools
• Well-trained control engineers with a strong mathematical

background
• Computing power for controller synthesis
• Numerically robust and efficient controller implementa-

tion.
Despite the fact that model-based postmodern robust control
techniques are exceptionally powerful, if one or more of these
requirements are not met, these methods cannot be applied. On
the other hand, there are the proven classical control methods
that have reliably produced robust solutions to a wide variety
of control problems for decades.

The simplest and most intuitive way to tackle the control
of an active magnetic bearing system is the so-called decen-
tralized control, where each sensor feeds back to the actuator
in the same degree of freedom [2]. However, in some systems
this introduces significant off-diagonal coupling terms in the
resulting transfer matrix, which in turn makes the task of con-
trol design very difficult. Zhang et al. introduced a method of
modal decoupling control for systems with strong gyroscopic
effects [3], where the big advantage is that the translational and
tilting modes can be influenced almost independently of each
other in different control channels. In other words, the speed-
dependent gyroscopic effects of nutation and precession occur
only in the tilt-mode control channel, where they are relatively
easy to handle.

A similar technique is shown by Hutterer, Hofer, and
Schrödl in [4]. However, these approaches are limited because
they fail when the first bending mode is close to the closed-
loop rigid body modes. In summary, no successful approaches
to decoupling modes other than rigid body modes have been
reported.

The following sections present the main ideas of the new
method in the order of a typical engineer’s workflow. The
workflow starts by analyzing and highlighting the limitations
of existing decoupling methods. This is followed by a brief
summary of the mathematical foundations of the new method
and its physical implications with respect to rotor dynamics.
Finally, a case study demonstrates the application of the
technique and evaluates its control performance using a real-
world example.



II. LIMITATIONS OF TRANSLATIONAL-TILTING CONTROL

Well-known decoupling methods such as translational-
tilting control implement MIMO control while preserving the
ability to interpret feedback parameters as physical quantities
in a SISO-like manner, similar to local feedback. This control
structure exploits the physical effect that the parallel and
conical modes of the rigid body system can be decoupled
using static transformation matrices, as shown in the Figure
1 for a plane through x and z coordinates (xz-plane). By
transforming the controller input signals {xseA, xseB} with
Tin so that the parallel and conical modes can be detected
separately, these modes can also be controlled separately. The
controller output signals, which physically correspond to the
torque τ and the concentrated force fx with respect to the
rotor center of gravity S, then only need to be transformed
into suitable forces {fxA, fxB} in the bearing planes A and B
with Tout [5].

Fig. 1: Rigid rotor with bearing magnets and sensors as well
as displacements and forces [5].

In this way, modal control of the rigid body modes is
achieved. Figure 2 shows the corresponding control architec-
ture.

To stabilize the rigid body modes in an AMB system, the
controllers Gp/c,x/y need sufficient positive phase (PD control,
lead element) around the crossover frequency of the open-
loop system. This results in high controller gains at higher
frequencies, which is undesirable due to noise amplification
and a destabilizing effect on the flexible modes. To overcome
these problems, the controller features a low-pass, i.e. roll-off
filter.

In a typical rotor design, the first flexible mode is well
separated from the rigid body modes. If the desired closed
loop bandwidth is around 50 Hz and the flexible mode is above
500 Hz, it is possible to use a steep roll-off to avoid excitation
of the bending mode. If the bending mode is below 500 Hz,
using a roll-off will compromise the positive phase to stabilize
the rigid body mode. Moreover, this may not be admissible for
all rotor designs as this procedure may violate the requirements
for amplification factor and separation margin of the mode,

Fig. 2: Feedback structure for decoupled control of parallel
and conical modes [5].

which are essentially designed to ensure that the rotor does
not operate close to a ligthly-damped critical speed [6]. A
possible, but theoretical solution is to use a positive phase
in the controller to actively dampen the bending mode. This
however results in even more gain in the controller, more noise
amplification, potential actuator saturation, and excitation of
other bending modes.

This means that the translational-tilting control architecture
fails in applications where the first bending mode is too close
to the rigid body modes.

A more sophisticated approach would be to separate the
bending mode into a dedicated control channel. In the other
control channel, the bending mode should be neither control-
lable nor observable.

III. PLANT MODEL

The general plant model is represented by a small gas tur-
bine with a maximum continous speed (MCS) of 35000 rpm.
The rotor model Gp comprises 95 beam elements for the shaft
and 4 lumped masses at the corresponding nodes to model
the impellers. Before building up the complete system model,
the rotor model is exported as mass, gyroscopic and stiffness
matrices (MGK matrix form) and transformed into modal
coordinates. This is important to model the rotor’s speed-
dependency resulting from its gyroscopic properties. Apart
from the rotor, the full system model includes the actuator
properties, amplifier dynamics, computational delay, negative
stiffness of the motor and sensor dynamics. There are four
force input stations f = [fAx, fAy, fBx, fBy]T at the locations
of the magnetic bearings and four displacement output stations
r = [rAx, rAy, rBx, rBy]T at the locations of the radial sensors.
This is visualized in Figure 3, where the rotor and its modal
analysis is shown.

The first flexible mode is at 226 Hz at standstill and the
corresponding forward mode is crossed at around 270 rps. This



needs a special unbalance force counteracting control (UFCC)
[9] algorithm, which is not part of this paper.

The dynamics of the rotor is modeled as a transfer function
matrix Gp(jω)

r(ω) = Gp(jω)f(ω). (1)

The bode magnitude plots are shown in figure 9.

IV. GENERALIZED MODAL DECOUPLING CONTROL

To achieve generalized modal decoupling control, Singular
Value Decomposition (SVD) is particularly useful because
of its close relationship to signal amplification in systems.
It is extremely important to have a thorough understanding
of the SVD, so the following section is intended to be a
concise summary of its mathematical foundations and physical
implications with respect to rotor dynamics. Despite the fact
that all of this theory is readily available in the literature, an
effort has been made here to gather the best information and
present it in a way that makes it accessible to the reader.

Let’s start with induced matrix norms. Consider the equation

r = Gf. (2)

If f ∈ Cm is the input vector and r ∈ Cp the output vector,
then ‖r‖2/‖f‖2 is said to be the “amplification” or “gain” of
the constant complex matrix G ∈ Cp×m. The maximum gain
for all possible input directions is of special interest and is
given by the induced norm defined as

‖G‖2 := max
f 6=0

‖r‖2
‖f‖2

= max
f 6=0

‖Gf‖2
‖f‖2

. (3)

That is, the induced 2-norm gives the largest possible amplifi-
cation of the constant matrix G. Therefore we need to find the
direction of the vector f that maximizes the ratio ||r||2/||f ||2,
which is a constrained optimization problem, namely finding

max
‖f‖22=1

‖r‖22. (4)

Applying the method of Lagrange multipliers, to seek the
critical points for the functional

L(f, λ) = rT r − λ
(
fT f − 1

)
= 0 (5)

= fTGTGf − λ
(
fT f − 1

)
= 0. (6)

Differentiating L with respect to f and λ yields

∂L
∂f

= 2
(
GTGf − λf

)
= 0 (7)

∂L
∂λ

= fT f − 1 = 0. (8)

The stationary point satisfies the eigenvalue problem

GTGf = λf. (9)

The eigenvalues λ of GTG, subsequently referred to as σ2
i , are

strictly non-negative because GTG is a symmetric matrix. The
positive roots σi are the so-called singular values of G. The
largest of these singular values is the maximum amplification
possible for the matrix G and is therefore ‖G‖2.

The normalized eigenvectors of GTG are vi. Because GTG
is symmetric, these eigenvectors are all perpendicular to each
other and form a unitary matrix V = [v1 v2 . . . vm] with the
property V −1 = V H .

Defining the normalized vectors

uj =
Gvj
‖Gvj‖2

=
1

σj
Gvj , (10)

it can be shown that U = [u1 u2 . . . up] is also a unitary
matrix with U−1 = UH . Together with the matrix Σ, which
is a diagonal matrix containing the non-zero, positive singular
values σi. These are arranged in descending order along the
diagonal, i.e

σ1 ≥ σ2 ≥ . . . σm. (11)

The SVD can be written as

GV = UΣ (12)

or in the matrix factorization form

G = UΣV H . (13)

In the two-dimensional space, the singular values have a
nice graphical interpretation. Consider the matrix

G =

(
1.5 0
−1.1 1.1

)
.

The objective is to find the direction of the vector f , given
‖f‖2 = 1, which maximizes ‖Gf‖2. The norm constraint on
f implies that f lies on the unit circle, like shown in figure
4. As the vector f is moved on the unit circle, r = Gf
describes an ellipse. To ensure SVD nomenclature consistency,
v1 corresponds to the direction of f with the maximum gain
σ1, whereas v2 is referred to as the direction of f associated
with the minimum gain σ2.

The length of major and minor axes of this ellipse are the
singular values σ1 and σ2 of the matrix G, respectively. To put
it simply, out of all possible input directions the input vector
v1 creates the largest possible response in the direction of u1.

This holds also if G(jω) is a frequency depending matrix.
For every fixed frequency ω there exist a SVD

G(jω) = U(jω)Σ(jω)V H(jω). (14)

That is, if G is frequency dependent, the singular values
and singular vectors of the system will also have frequency
dependence.

There is a nice physical interpretation of the SVD for a
rotor model. Taking the model from section III evaluated at
MCS and augmenting it by other force input stations at the
beginning of the shaft, at the center of gravity and at the end
of the shaft yields the following force vector

faug =


fbeg,x
fbeg,y
fcog,x
fcog,y
fend,x
fend,y

 .
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Fig. 3: Bending mode shapes of the corresponding natural frequency of the rotor. Both natural frequency and bending mode
shape were calculated with a low bearing stiffness of 1 · 106 N/m to simulate free-free conditions.
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Fig. 4: Graphical interpretation of the singular value decom-
position: The input f (‖f‖2 = 1) is plotted on the left side,
whereas the output r = Gf is plotted on the right side

Such input forces are typical to excite the first bending mode
[6]. Similarly, radial sensors are assumed to exist at every of
the 95 nodes of the model.

raug =


rnode1,x
rnode1,y

...
rnode95,x
rnode95,y

 .
This is expressed by the augmented plant transfer matrix

raug(ω) = Gaug(jω)faug(ω).

Now if the plant transfer matrix is evaluated at its
natural frequency, i.e. the first bending eigenfrequency
Gaug(jωn), a complex valued matrix G is obtained. Apply-
ing the SVD yields a complex left singular vector u1 =
[unode1,x, unode1,y, . . . ]

T which can be visualized by plotting
the real and imaginary parts of its x- and y-elements, respec-
tively, against the axial coordinates of the nodes (see Figure
5). Comparing Figure 5 with the mode shapes in 3 reveals that
u1 corresponds to the eigenshape of the first bending mode.
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Fig. 5: Physical interpretation left singular vector u1 of G =
Gaug(jωn)

Similarly, the right singular vector v1 ∈ C2·3 can be thought
of as some force distribution like unbalance along the rotor
[7]. Out of all possible input directions, the force distribution
which leads to maximum excitement of the rotor is where the
force acting on the rotor’s center of gravity is 180◦ out of
phase with respect to forces at the rotor ends. Naturally, this
will result in the largest possible response, which is exactly the
bending mode as can be seen in Figure 6, where again the real
and imaginary parts of the x- and y-elements of the singular
vector is plotted against the respective axial node coordinates.

After resetting the displacement output stations and force
input stations of the general plant model to the four locations
of the radial sensors and magnetic bearings, respectively, the
generalized modal decoupling control transformations can be
found by examination of the left and right singular vectors u1
and v1, of the SVD of G = Gp(jωn), where ωn denotes the
frequency of the mode to be decoupled.

If f ∈ Rm and r ∈ Rp, the transformation matrices to be
found are represented by TU ∈ Rp×p, TV ∈ Rm×m. However,
there is no loss of generality in assuming m = 4 and p = 4,
as in the general plant model Gp. Now to create the new
output vector which separates the natural frequency ωn from
its complement or null space, a transformation matrix TU
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out of phase.

which satisfies


rmode,x

rmode,y

rmode,x

rmode,y

 = TU


rAx

rAy

rBx

rBy

 . (15)

needs to be found. rmode,x/y are the transformed control input
channels that contain the desired mode shape, and rmode,x/y

are the transformed control channels that do not observe it.
Given that u1 = [uAx, uAy, uBx, uBy]T , it holds that the

matrix from (16) satisfies (15)

uref,j =
uAj

‖uAj‖
, j ∈ {x, y}

T̂ =

[
uAx · uref,x 0 uBx · uref,x 0

0 uAy · uref,y 0 uBy · uref,y

]

TU =

 Re
(
T̂
)

ker
(

Re
(
T̂
)) (16)

where ker(.) is the kernel or null space of a matrix. The
main idea behind converting complex values in u1 to real
values in TU is to generate real frames that are aligned as
closely as possible to the given complex frames. This can be
done with the ALIGN algorithm of Kouvaritakis [8]. However
here, for ease of understanding, the idea and the corresponding
algorithm is outlined using the dot product. Since the transfor-
mation matrix must be real-valued, the complex-valued entries
of the singular vectors must be interpreted accordingly. By

treating the first entry of the singular vector as the normalized
reference vector in the complex plane, all entries can be
aligned to this vector via the dot product.

Figure 7 graphically illustrates the entries of the left singular
vector u1 of G = Gp(jωn), which represent the rotor
deflection of the bending mode shape at the sensor locations.
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Fig. 7: Physical interpretation left singular vector u1 of G =
Gp(jωn)

Similarly, given v1 = [vAx, vAy, vBx, vBy]T a new input
vector which directly influences the targeted mode shape and
the corresponding complement or null space is found by (17)
and (18), respectively.


fmode,x

fmode,y

fmode,x

fmode,y

 = TV


fAx

fAy

fBx

fBy

 (17)

vref,j =
vAj

‖vAj‖
, j ∈ {x, y}

T̃ =

[
vAx · vref,x 0 vBx · vref,x 0

0 vAy · vref,y 0 vBy · vref,y

]

TV =

 Re
(
T̃
)

ker
(

Re
(
T̃
))T

(18)

Figure 8 graphically illustrates the entries of the right singu-
lar vector v1 of G = Gp(jωn) representing the input forces of
the magnetic bearings which lead to the maximum excitement
of the rotor. This algorithm may be generalised for a setup
with many control planes, which allows to decouple multiple
modes (see Equation 20). The letters A to Z represent the
control planes and n denotes the number of mode frequencies
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to be decoupled. In other words, the transformation matrix
essentially consists of the blocks Ti,k ∈ R2×2, nicely stacked
upon each other, where i ∈ {A, . . . ,Z} and i ∈ {1, . . . , n}.
The input transformation TV is obtained analogously when the
left singular vector u is swapped with the right singular vector
v.

V. EXPERIMENTAL RESULTS

In this section the results achieved by the introduced de-
coupling control technique are investigated. The plant that is
subject to this case study is a small gas turbine. The maximum
continous speed (MCS) of the machine is 35000 rpm (583 rps)
thus representing a supercritical application (MCS is above
the the first flexible bending mode frequency). The model of
the rotor borne by magnetic bearings is given in section IV.
Its frequency response at standstill and maximum continous
speed, respectively, can be found in the Bode plot in Figure 9
shown in blue.

In this section this model is used to design a hand-
synthesized position controller, which meets the generally
known and obvious objectives such as a sufficient stability
margin and an adequate handling of external loads. It is vitally
important to emphasize that the craftsmanship and optimiza-
tion of hand-synthesized controllers is generally referred to as
loop shaping1 and is largely considered an art for systems
with this level of complexity. As a result, the assessment
of optimality of such controllers is non-trivial. However, the
most straightforward and intuitive approach for designing a

1This classical approach aims to shape the magnitude of the open-loop
function L(jω) = GpGc, where Gc is the feedback controller to be designed
and Gp is the plant.

controller is to attempt to make the AMB act like conventional
mechanical bearings at the actuator locations, that is, feedback
control is being performed locally for each bearing unit and
separately for each bearing axis. However, this approach,
often referred to as decentralized control, over-simplifies the
problem and must be adapted and extended for realistic rotor
systems. Applying the Tilting-Translational coordinate trans-
formation results in the brown frequency domain characteris-
tics shown in Figure 9. It is not hard to see that the transformed
plant features little to no benefits over the decentralized plant
as the cross-coupling terms are still substantial and there is
no useful mode separation. The golden transfer function is
obtained by applying the generalized modal decoupling control
transformation proposed in this paper, where the plant transfer
matrix is evaluated at the first bending eigenfrequency (see
Figure 3). The critical frequency is detected separately and
can therefore be controlled separately, which greatly facilitates
the control design. The design of a controller that meets
the robustness and performance criteria of generalized modal
decoupling control plant Gp,gmd is fairly easy whereas the
design that targets the tilting-translational control plant Gp,tt

is quite tedious and unable to meet the necessary performance
criteria. This generally results in a conservative controller
being unable to keep the rotor in position, i.e. centered under
rotation. The position controller of the magnetic bearings
must be able to maintain stability and performance under the
influence of all plant uncertainties such as the splitting of
eigenfrequencies due to gyroscopy, changes in suction pressure
and gas composition to name a few. The ISO standard 14839
addresses this robustness issue and imposes limits on the peak
value of the output sensitivity function Se = (I + L)−1.
The standard recommends that the diagonal elements of Se

have a peak value below 3 for newly commissioned machines.
However, this does not guarantee high performance of the
closed-loop, i.e. small rotor orbits, good disturbance rejection,
therefore other criteria must be introduced. Here the dynamic
compliance Gf is used which is the relation between rotor
displacement and external force2. Obviously, Gf must be as
low as possible for all frequencies. Unlike the specification of
Se, there is no absolute upper limit for the compliance since
it is dependent on the range of bearing force. As a result, the
design goals can be summarized as follows:
• ‖Se(i, i, jω)‖∞ ≤ 3, i ∈ {1, . . . , 4}
• ‖Gf (jω)‖∞ ≤ ε, ε as small as possible

Now the controller design can be divided into the following
steps.
• Due to the decoupling properties of the proposed trans-

formation, the off-diagonal elements can be neglected.
• Due to rotor symmetry, only two SISO controllers must

to be designed for the four diagonal elements of the
transformed plant Gp,gmd.

• The controller is designed in order to robustly stabi-
lize the plant, that is, fulfilling the generalized Nyquist

2Dynamic compliance refers here to Gf (jω) = Gp(jω)Su(jω), where
Su(jω) is the sensitivity function at the plant input.



uref,j(ω) =
uAj(ω)

‖uAj(ω)‖
, j ∈ {x, y} (19)

TU =

T 2×2
i,k

{

uAx(ω1) · vref,x(ω1) 0 · · · uZx(ω1) · vref,x(ω1) 0
0 uAy(ω1) · vref,y(ω1) · · · 0 uZy(ω1) · vref,y(ω1)
...

...
. . .

...
...

uAx(ωn) · vref,x(ωn) 0 · · · uZx(ωn) · vref,x(ωn) 0
0 uAy(ωn) · vref,y(ωn) · · · 0 uZy(ωn) · vref,y(ωn)

ker
(

Re
(
T̃
))




T̃

(20)

criterion for any plant in the set of transfer functions
represented by uncertainty.

• Ensure that the design goals are met for any plant in the
set of transfer functions represented by uncertainty.

Figure 10a and 10b show the controller which meets the
design goals, in the centralized and decentralized coordinate
system, respectively. During the machine commissioning, it
was gradually accelerated to reach its maximum continuous
speed. At various rotational speeds, relevant control signals
were measured, and frequency domain measurements of the
control plant and sensitivity Se were conducted. This exercise
ensured the stability of the control system at any rotational
speed. In order to deal with umodeled dynamics, adjustments
were made to further enhance the controller by augmenting it
with numerous tricks such as notch and phase bump filters.
Figure 11 shows the measured sensitivity functions Se at
standstill and at MCS. Evidently, the peak values of all diago-
nal elements at both rotation speeds are below 3, which implies
that the closed-loop exhibits excellent robustness against plant
uncertainties and falls into zone A, according to ISO 14839
[9].

VI. CONCLUSION

In this paper a generalized modal decoupling control method
has been proposed, which essentially is able to split up the
system into modal parts and its null space via coordinate
transformation. The functionality of this transformation was
proved by experiments on a supercritically operated small gas
turbine. The transformation coordinate system rendered the
task of control design substantially easier because it achieves
true mode separation. This allows to stabilize the first bending
mode over a great frequency range without compromising
the other flexible modes on the modal channel, whereas the
requirement to actively stabilize any flexible modes is com-
pletely eliminated on the complementary channel. Essentially,
the proposed method is a generalisation and improvement
of existing decoupling methods such as tilting-translational
control, therefore it is widely applicable to the vast majority
of magnetic bearing control problems.
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Fig. 9: Bode plot of the plant models (x-plane only). Top (blue): Initial 2x2 plant without decoupling. Middle (brown): Plant
decoupled by Tin and Tout (Tilting-Translational). Bottom (gold): Plant decoupled by TV and TU (SVD). It is easy to see that
the flexible mode is present in the main and off-diagonal channels in Gp and Gp,tt. For Gp,gmd the mode is only present in
the first channel and has a very low coupling to the other channel. The transformation has been tuned to be best at MCS for
the forward mode.



(a) Centralized controller which has no coupling between the modal
decoupled channels. The controller is tuned by hand to fulfill the
performance and robustness requirements for whole the speed range
of the machine.

(b) Decentralized controller, generated by applying the modal decou-
pling TV and TU to the decentralized controller, showing significant
and frequency dependent coupling between the sensor and actuator
planes A and B.

Fig. 10: Controller in centralized (SVD) and decentralized coordinates, without integrator action. Plots are made for the x-plane.
The y-plane uses the same controllers. It is worth to highlight that the controller needed to be augmented it with numerous
tricks such as notch and phase bump filters to cope with spurious effects suchs as temperature depending housing resonances.
Evidently, this reinforces the argument for the generalized decoupling control method as generally known methods would not
provide room for corrective action, when the control design for the rotor itself is next to impossible.

(a) Sensitivity at standstill. (b) Sensitivity at top speed

Fig. 11: Measured output sensitivities at standstill and top speed according to ISO [9] fall into zone A. The system features
substantial robustness and excellent performance.


