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Abstract 
To reduce CO2 emissions, the share of renewable energies in the grid increases. At the same time, many sectors like 

the transport and the building sector are changing to be powered by electricity. Especially electric cars demand high 
peaks in current from the grid. Storage is needed to balance demand and supply of electric energy. Flywheels can be 
part of the solution as they can be charged and discharged with high power and do not suffer from losing significant 
capacity even after thousands of cycles. Minimum loss of energy is crucial for a flywheel therefor active magnetic 
bearings (AMB) are used. If a malfunction of the AMB occurs the rotor falls into a touch-down bearing (TDB). To decide 
whether further maintenance in case of a drop-down event is needed information about the forces stressing the TDB is 
important. To avoid costs for physical sensors soft sensors are a suitable solution. In this research, a data-driven soft 
sensor based on recurrent neural networks is created to calculate the forces during the drop-down event. As input data 
only the position of the rotor is used. A test rig with physical sensors applied to every TDB supplies the force data to 
train, validate, and test the soft sensor model. Three different network architectures are compared. The results show 
that the sensor can calculate whether the rotor hits a TDB and is also capable of predicting the peaks in the force signal. 

   

Keywords: soft sensor; AI; neural network; touch down bearing; backup bearing 

 
1. Introduction 

To tackle climate change, the share of renewable energies in the grid increases. At the same time, the overall 
demand for electrical power rises, and consumers like charging stations for electric cars request high peaks in current 
from the grid. To balance production and demand storage is needed. Flywheels represent a suitable storage system for 
several occasions as they can be charged and discharged with high power and do not suffer from losing significant 
capacity even after thousands of cycles. To lower the loss of energy within the storage the rotor normally runs in an 
evacuated room and active magnetic bearings (AMB) are used to support the rotor. In the case of a malfunction of the 
AMB touch-down bearings (TDB) are applied to prevent a destructive rotor-stator contact elsewhere in the system. The 
design of TDB is a research topic due to the challenging conditions. TDB must endure high forces and rotational speeds 
caused by the rotor but also by working in evacuated areas which complicates lubrication and hinders heat dissipation. 
If a drop-down event occurs, one needs to decide whether maintenance of the TDB needs to be conducted. One way 
would be to disassemble the flywheel and do a visual check of the bearings. Another approach can be to check the 
forces over time that stressed the TDB during the drop-down event. The forces can be measured by using piezo electric 
sensors or strain gauges. In both ways, the sensors need to be applied to every TDB unit. When using planetary TDB this 
can mean that at least six sensors in the overall flywheel are required, which drives up the cost of the system. 

Soft sensors or virtual sensors can overcome this problem. They use existing data and calculate a desired output 
variable. Soft sensors can be divided into model-driven and data-driven soft sensors (Jiang et al., 2021). The model-
driven approach can be used if the knowledge about the physical relations between input and out variables is well 
known and understood. If this is not the case data-driven soft sensors come into play. They can be based on different 
methods like partial least squares (PLS) (Kano and Nakagawa, 2008), principal component analysis (PCA) (Zhang et al., 
2020), or support vector machines (SVM) (Yan et al., 2004). In the last few years, soft sensors based on neural networks 
became more popular (Yuan et al., 2020). When it comes to the prediction of time-related data recurrent neural 
networks (RNN) show a good ability to understand and utilize the information which is embedded in the time series (Du 
and Swamy, 2019). A drawback of an RNN is the vanishing or exploding gradient problem especially when longer series 
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of data is computed (Yuan et al., 2020). To overcome this problem, the long short-term memory (LSTM) architecture 
was developed by Hochreiter and Schmidhuber (1997). 

The LSTM architecture was applied to several soft sensor applications. ElSaid et al. (2016) used an LSTM network to 
predict the vibration of an aircraft engine up to ten seconds into the future by using several input variables measured 
already by the engine. Bellone et al. (2020) showed that an LSTM is capable of estimating states like the NOx values of 
a combustion engine of a car as a real-time application. In the work of Miettinen et al. (2021) the displacement of rotors 
used in the paper industry was estimated by a bidirectional LSTM using the bearing reaction forces. 

This paper presents an approach where a soft sensor based on different neural networks was trained to predict the 
forces on the TDB. 

 
2 Method 

This section describes the test rig to explain the overall setup and to show where the data used for the NN is 
measured. Afterward, the preprocessing of the data is explained. The different network architectures are further 
described and the methodology to analyze the results is explained. 

2.1 Test Rig 

To test the planetary TDB of the flywheel, a special TDB test rig for drop-down experiments in planetary TDB has 
been built at the Institute for Mechatronic Systems at the Technical University of Darmstadt. Even if the TDB test rig is 
built as a robust inner rotor system to withstand multiple drop-downs it has similar rotor dynamic properties as the 
flywheels (Proceedings of ISMB 16, 2018; Quurck et al., 2017; Quurck et al., 2018). The rotor has a mass of 18 kg and a 
maximal rotational speed of 20,000 rpm. This results in a surface velocity of the rotor at the planetary TDB of 230 m/s. 
Figure 1 shows a partial section view of the test rig without its base and a detailed view of the planetary TDB itself. 

As the flywheels, the TDB test rig is levitated magnetically in all axes and driven by a permanent magnetic 
synchronous machine. For a drop-down experiment, the radial AMB are switched off, while the axial AMB remains active. 
This is because in the flywheel the axial levitation is performed by a passive permanent magnetic bearing which is not 
expected to fail. Since the purpose of the TDB test rig is to test the planetary TDB till failure the system has a secondary 
TDB which only gets in contact with the rotor if the planetary TDB has failed. The system is equipped with eddy current 
position sensors from eddylab, which are needed for the AMB and the drop-down evaluation. For a deeper analysis of 
the drop-down experiments, the system is equipped with multiple further sensors. For example, the force is measured 
at every TDB unit. In all, in this paper investigated drop-down experiments one TDB unit in each plane is equipped with 
a piezoelectric force sensor from pcb of type 211B. The charge amplifier is of type 5073A411 from Kistler. At the 
remaining TDB units, the forces in radial and tangential direction are measured with structurally integrated strain gauges. 
For the data acquisition, a system from National Instrument is used.  
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Figure 1 labeled partial section view of the TDB test rig without the base and a detailed view of the planetary TDB with 3 TDB units with strain 
gauges and one TDB unit with a piezoelectric force sensor.  

 
2.2 Modeling 

The test series that was used for the training, validation, and testing of the neural network contains 57 drop-down 
event experiments. The rotational speed when the drop-down was initiated varies between 2500 and 20,000 rpm. The 
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force data given by the strain gauges were sampled at 20 kHz and the position data was sampled at 10 kHz. The length 
of one drop-down experiment varies with the initial rotational speed and goes up to 300 s, the higher peaks in force on 
the TDBs normally occur during the first 100 s. This leads to a maximum amount of 6,000,000 samples per sensor signal 
per test series. For the modelling the goal was to use only sensor signals for the soft sensor which are already available 
in flywheels. Therefore, even if the TDB test rig is equipped with multiple sensors, only the position measurement is 
used. For the training, validation, and testing 23 test series were used, 14 for training, five for validation, and four for 
testing.  

The main usage of the soft sensor is to calculate the forces after a drop-down event to then decide whether 
maintenance is required. This also means that the sensor does not need to be real-time capable. The position data of 
the four sensors were fed in sequences into the soft sensor and the output of the soft sensor is a sequence of force data 
with the same length. It was investigated whether it is beneficial building one soft sensor that estimates the force on 
every TDB or build one soft sensor for each TDB. As the in- and output sequences of data are used the task can be 
described as a sequence-to-sequence regression task. The length of the input and output sequence was changed in 
length between 512 and 4096 samples to figure out what gives the best results. To increase the amount of training data 
the stride length between two sequences which are extracted from the test series was not equal to the length of the 
sequences. The stride length was changed in different tests from 32 samples to 1024 samples. Next to gaining more 
training data, the goal was to utilize high peaks in the force data in more than one sequence. As peaks in the force data 
can occur in more than one sequence it is important to not pick sequences randomly and distribute them to the training, 
validation, and test dataset. This would lead to a situation where the same data appears in training and testing. To avoid 
this case the different experiments were distributed into training, validation, and test data. Only 23 of the 57 
experiments were chosen because the other ones were conducted with a lower rotational speed of the rotor at the 
drop-down event. To reduce computation effort sequences without any peaks in force were deleted. This was done by 
comparing the maximum force data of a sequence to a threshold. As there is noise on the force data this threshold was 
set at 500 N. As described before the sampling rate for the position data and the force data measured by the strain 
gauges are not the same. In this case, up-sampling for the position data was conducted. This was achieved by adding 
values between every other position data point by linear interpolation. In Figure 2 one can see an example sequence of 
the in- and output data. On the left, the orbit of the rotor during an example sequence is shown for the upper sensor 
plane. The green and red lines determine the part of the trajectory where the rotor hits the TDB and a force is measured. 
The measured force during the sequence can be seen on the right side of the figure. In this case, there is an offset on 
the sensor signal of about 100 N and some noise with an amplitude of around 50 N. The peak in Force reaches nearly 
3200 N. The peak has a length of around 50 samples which represents 2.5 ms.   

 
Figure 2 left: rotor trajectory in the upper sensor plane; right: measured normal force on TDB in the upper plane. 

As the task is a sequence-to-sequence regression where the relation in time between different data points is 
important RNN were chosen. More specifically the LSTM and the gated recurrent unit (GRU) architecture were 
compared. In an RNN the output of one cell of the network is fed into the network in the next timestep again. This can 
lead to a vanishing or exploding gradient problem when it comes to training the network. Both the LSTM and the GRU 
architecture tackle this problem by adding a path where information can flow without being multiplied by any weights 
which could lead during the training to the vanishing or exploding gradient problem. The GRU architecture needs less 
computational effort which can be beneficial if a real-time application is on hand (Han et al., 2023). The bidirectional 
LSTM architecture is an addition to the normal LSTM architecture. Here, the input sequence is computed forward 
through and network and backward. In real-time applications, this can be crucial as a leg in time for the prediction 
appears. The number of layers and the number of hidden states were changed during the trials. After the RNN layers, 
fully connected layers were added to the network. In the end, the loss was determined. Here, the mean absolute error 
(MAE), the mean squared error (MSE), and the mean cubic error (MCE) were chosen. For the training of the networks, 
the Adam solver was used with a learning rate decreasing over time. The validation dataset was evaluated four times 
per epoch. The training stopped when the loss of the validation dataset did not decrease five times in a row.  
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To compare the results of the different architectures two methods were used. First, the overall root mean cubic 
error (RMCE) between the predicted values and the measured values from the test rig was computed according to (1). 
Here, 𝑛𝑛 represents the total number of sequences and 𝑠𝑠 the total number of samples per sequence. The RMCE was 
chosen because in the calculation of the lifetime of a grooved ball bearing the force affects the lifetime with the third 
power (Childs, 2019).  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
1
𝑛𝑛 𝑠𝑠

 ��� |(𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛,𝑠𝑠 − 𝐹𝐹𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑛𝑛,𝑠𝑠)|3 
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(1) 

 

Next to the RMCE further attention was paid to the height of the peaks in force. Therefore, the peaks were 
categorized into different groups according to their height. Every group has a range of 500 N, with the first group going 
from 500 to 1000 N. The number of groups depends on the height of the highest peak of the test data. Then, the peaks 
in the test data in every sequence were localized. The height of the peak and sample number of the location in the 
sequence were stored. Afterward, in the corresponding predicted sequence, the highest predicted value around the 
stored location was searched. For every group of peaks, the root mean squared error (RMSE) was computed by 
comparing the heights of the measured peaks from the test rig with the heights of the predicted peaks. Figure 3 shows 
an exemplary diagram of the accuracy of a network for different groups of peaks. In this case, the calculated RMSE for 
each group was divided by the force value of the group to gain a deviation in percentage. As the groups have a width of 
500 N the median of the group boundaries was used to calculate the percental deviation. In the measurement shown 
in Figure 3, there was no peak with a value between 3500 and 4000 N and therefore there is no bar visible. 

 
Figure 3 example of the accuracy in predicting peaks of different heights in percentage. 

 
3 Results 

Different architectures were compared on the data of the test rig. For the comparison the sequence length of the 
in- and output data was set to 1024 samples and the stride length between two sequences to 512 samples. The 
architectures can be seen in Table 1. “3 x 512 LSTM” means that three LSTM layers with 512 hidden units are used. “1 
x 128 FC” represents one fully connected (FC) layer with 128 neurons. For every network, an MSE regression layer was 
added. 

Table 1 network architectures 

LSTM 1 LSTM 2 BiLSTM 1 BiLSTM 2 GRU 1 GRU 2 

3 x 512 LSTM 
1 x 128 FC 
1 x 64 FC 
1 x 32 FC 
1 x 16 FC 

3 x 256 LSTM 
1 x 256 FC 
1 x 128 FC 
1 x 64 FC 
1 x 32 FC 
1 x 16 FC 
1 x 8 FC 

3 x 512 BiLSTM 
1 x 128 FC 
1 x 64 FC 
1 x 32 FC 
1 x 16 FC 

3 x 256 BiLSTM 
1 x 256 FC 
1 x 128 FC 
1 x 64 FC 
1 x 32 FC 
1 x 16 FC 
1 x 8 FC 

3 x 512 GRU 
1 x 128 FC 
1 x 64 FC 
1 x 32 FC 
1 x 16 FC 

3 x 256 GRU 
1 x 256 FC 
1 x 128 FC 
1 x 64 FC 
1 x 32 FC 
1 x 16 FC 
1 x 8 FC 

MSE regression layer 

In Figure 4, an example sequence for the force on one TDB is shown. The sequence is 1024 samples long which 
represents 51.2 ms. The force on the TDB measured in the test rig is visualized in blue and the force predicted by the 
network in orange. One can observe that especially the positions of the peaks in force are accurately predicted by the 
network. This means that the network can predict whether contact between the rotor and the TDB occurred or not. The 
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heights of the peaks by trend seem to be predicted a bit lower compared to the measured ones. On the right side of 
Figure 4 the accuracy of the network for predicting peaks in different groups is visualized. The deviation is given in 
percentage as it was shown in Chapter 2.2. It is noticeable that the accuracy rises when the height of the peaks decreases. 
What needs to be mentioned is that the number of peaks that could be used to calculate the deviation in the prediction 
was rather low for the groups with high peaks. The value for the group from 4000 to 4500 N was only calculated on the 
one peak shown in the plot on the right. For the groups 2500 to 3000 N and 3000 to 3500 N, less than ten peaks were 
available. 

  
Figure 4 left: predicted (using 1. BiLSTM network) and measured force sequence of the test data; right: peak accuracy in percentage. 

To compare the different architectures the overall RMCE was computed as described in Chapter 2.2. At the same time, 
the percental accuracies as shown in Figure 4 were computed for each network on the test data. Afterward, the 
percental accuracies for all six different architectures were visualized in one boxplot shown in Figure 5. The percental 
accuracy for the group of peaks from 4000 to 4500 N in Figure 4 of around 45 % can be spotted as an outlier value in 
Figure 5 in the box of the first BiLSTM network. On the right side of Figure 5, the overall RMCE for each network 
architecture is visualized. Here, one can see that the lowest RMCE values are achieved by the two BiLSTM networks. 

 
Figure 5 left: boxplot of the different peak accuracies of each network; right: overall RMCE of each network 

 

4 Conclusion 

This paper investigated utilizing soft sensors to measure the force on planetary TDB during drop down events. The 
data was collected on a test rig which was built for research on different planetary TDB designs. As input data for the 
soft sensor only the position data of the rotor in the two sensor planes was used. For the calculation of the force signal, 
different RNN were tested and compared by their overall RMCE and their accuracy in predicting peaks of the force signal 
on a test data set. Here, the accuracy of the network based on a BiLSTM structure performed best. The bidirectional 
path leads to leg in prediction which is not a problem in this case, because this is not a real-time application. An accuracy 
of predicting the heights of the peaks of around 20 % can be achieved for lower peaks. In these results, the accuracy for 
higher peaks goes down to 40 %. As the number of peaks with this height in test data was very low this value is less 
meaningful. The motivation of this work was to measure the force on the TDB to be able to take decisions on whether 
maintenance is necessary after a drop-down event. Therefore, a future research question could be, which force impact 
leads to damages in the system that need to be fixed before running the system again. In this work, the networks were 
trained on data measured on a test rig. In the future, it could be beneficial to use data that is gained from a simulation 
of the test rig for training and then testing the network on measured data from the actual test rig. This could be useful 
for developing flywheels where no sensors for the force on the TDB are applied. 
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