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Abstract

Previous works have demonstrated that analytical high–fidelity models of nonlaminated actuators and magnetic
thrust bearings cannot just describe the magnetic skin effect inside the solid core, but also be applied directly
within the control circuit. By an appropriate rational approximation a digital implementation on a microcontroller
becomes possible. These approximated models generally do not consider frequency–dependent fringing and
leakage fluxes, which may account for more than 7 % of the total flux. Reluctance networks are a popular choice
to address this discrepancy. When calculated carefully, they can highly improve the accuracy of static models.
However, their limitations in real–world scenarios are usually not discussed, even though the magnetic skin
effect significantly changes the flux distribution in the nonlaminated core at already very low frequencies. In
this article we review the practicability of reluctance networks and their possible simplifications in the context of
real–time control systems. Depending on the control’s objective we find they may be even discouraged, while
simple correction factors allow for consistent results over the entire frequency range.
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1. Introduction

In recent years active magnetic bearings (AMBs) have seen an increase in their industrial applications due to
a reduction in costs of the required power electronics and controllers but also in maintenance and operations, due
to the establishment of remote service. This opens the market for new applications and prompts an increasing
number of OEMs of traditional products, such as compressors, pumps and turbines to consider AMBs. As a
consequence, there emerges a desire for high–stiffness AMBs with a disturbance suppression ∆KDS>120dBm

N ,
which will match the stiffness of their mechanical counterparts (∆KDS≈ 160dBm

N ) to some degree. This is
especially challenging for active magnetic thrust bearings (AMTB) as well as other solid–core actuators, as eddy
current flow inside the core and the resultant magnetic skin effect is usually not avoidable (Seifert et al., 2021a).

The magnetic skin effect causes a significant lag between the force–generating magnetic flux and the
measurable coil current, which results into a substantial damping of the actuator force in the often current
controlled systems (Zhu et al., 2010). Alternatives, like a direct voltage control (Vischer, 1988) as well as hybrid
forms (Ferreira et al., 2017; Keith, 1993) have not become established widely, considered only as a compromise.
In previous works, we proposed a non–compromising control approach (Seifert et al., 2021a): instead of the
measurable coil current, we control the actual force–generating flux as shown in Fig. 1. In the feedback branch we
introduced a fractional–order flux estimator, which is able to determine the air gap flux from the measurable coil
current in real–time. By use of the diffusion equation, the flux estimator mainly compensates the consequences
of the magnetic skin effect caused by the eddy currents, but other nonlinearities may be considered as well.
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Figure 1: Closed–loop flux control with fractional–order
flux estimator based on the measured coil current imeas

While the hysteresis is deemed neglectable, the core saturation
can only be taken in account by a linearizing the core’s permeabil-
ity at a carefully determined operating point. Lastly, the inclusion
of leakage and fringing fluxes is discussed in this paper. We re-
view the practicability of reluctance networks as obvious choice
often proposed in literature (e g. Le et al. (2016) and Sun et al.
(2009) amongst others).

Fringing and leakage fluxes are commonly subject of inves-
tigation in actuator modeling. However, in case of nonlaminated
actuators like magnetic thrust bearings their accurate computation

1



The 18th International Symposium on Magnetic Bearings 438895

is challenging and the authors find that – more often than not – approaches found in the literature are based on
oversimplified assumptions. Usually, reluctance networks calculated for the magnetostatic case are also applied
to the frequency domain, without discussing the impact of a changing flux distribution due to the magnetic skin
effect. That is why we review the common practice of reluctance networks for the dynamic case of nonlaminated
actuators. We use of a revised set of analytical expressions we proposed in Seifert et al., 2021b to model
the reluctances of the fringing and leakage flux paths more accurately. In addition, possible simplifications are
suggested to include leakage and fringing fluxes in real–time control models and distinguish them depending on
the control’s objective.

This paper is organized as follows. Section 2 gives a brief introduction into the existing eddy–current model, on
which the flux model and estimator is based on. For a deeper understanding of the physics and the mathematical
modeling based on fractional–order systems, we like to refer to our previous work Seifert et al., 2019. In the main
part of the article we use a FE–analysis (FEA) to identify all flux paths and form a reluctance network for the
static case in section 3. The inverted model can then be used in section 4 to calculate all frequency–dependent
fringing/leakage fluxes for a given magnetomotive force. In the final section 5 we discuss the accuracy of the
reluctance model and its actual practicability in comparison with simple constant correction factors.

2. Eddy current effects and their modeling

Eddy currents in nonlaminated actuators have already been discussed thoroughly in the literature in recent
years. The foundations of any high–fidelity model in the frequency–domain were laid down by Stoll, 1974, further
refined by Feeley, 1996 to establish the so–called “eddy–inductance”, which we used for the flux estimator.
Cylindrical actuators and magnetic bearings were first considered by Rabinovici et al., 1992 and Kucera et al.,
1996, respectively, leading to the almost complete model by Zhu et al., 2010.
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Figure 2: Magnetic circuit of AMTB
divided into five classes of effective
reluctances (cf. Seifert et al., 2019)

In our previous work (Seifert et al., 2019) we presented a full historical
review of eddy current models, a study on their physical impact as well as final
model refinements. Due to this extensive groundwork we will introduce only
the most essential equations here.

In a first step, we divide the actuator geometry (Fig. 2) into core parts,
which are only permeated by a one–dimensional magnetic flux ˘i (j!). This
we calculate by solving the diffusion equation curl (curl ~B ) = −¸2 ~B in its
complex form for every core element, where ¸=

√
j!»— denotes the complex

wave propagation constant with the constant permeability —= —0—r and elec-
trical conductivity » (for assumed isotropic and homogeneous materials). By
help of the magnetomotive force (mmf) ˆ(j!), we obtain the overall effective
reluctance Reff(j!) as the sum of the part reluctances Ri (j!) of every core
element Reff(j!), which translates into the effective inductance Leff(j!) and
the definition of the desired flux estimator:

Reff(j!) =
N2

Leff(j!)
=
X
i

ˆ(j!)

˘i (j!)
=
X
i

Ri (j!) ⇒ GFE(j!) =
˘f est(j!)

imeas(j!)
=
Lh
N

RCu+ sLeff(j!)

RCu+ sLh
; (1)

with the number of coil turns N. The main inductance Lh = Leff(! = 0) corresponds to the force–generating
component of current and flux, which is independent from the eddy currents.

3. Static Fringing and Leakage Flux Model

The basis for every dynamic model of fringing˘fl and leakage fluxes˘ff is a magnetostatic model. For the sake
of readability we speak of non–core fluxes ˘fl|ff covering both flux types as opposed to the core or main path fluxes
exclusively permeating through the iron core and the geometrical air gap. Air gap fluxes ˘gi, directly crossing
the gap without bulging, are attributed to the core fluxes, as they share a comparable frequency behavior. Early
adaptations of reluctance networks considering non–core fluxes in radial magnetic bearings go back to Meeker
et al. (1996). Later they have been applied to thrust bearings by Sun et al., 2009 and Wang et al., 2014 as well as
combined bearings by Le et al., 2016 and Zhong et al., 2017, like in our case, but with significantly differing leakage
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paths and sometimes only for the magnetostatic case. Non–core fluxes in laminated radial bearings and conven-
tional rotating machines are usually subject to only minor fluctuations and can be considered by a constant leakage
ks and fringing factor ku, respectively. In nonlaminated AMTBs the magnetic skin effect alters the flux paths
and the overall impact of the non–core fluxes depends on the frequency. For this reasons, we study the potential
and practicability of a reluctance network and check whether it can be implemented within the flux estimator.

As a first step we assume a symmetrical thrust bearing (Fig. 3, bias flux omitted), to simplify the identification
of the non–core flux paths in the field results of a magnetostatic FEA. Otherwise, negligible but misleading
asymmetrical compensation fluxes occur. After identifying the reluctance network we calculate quantitative values
for the non–core reluctances Rfl|ff. To achieve this, we use the fluxes determined for every network branch by the
FEA for a given magnetomotive force (mmf) ˆ. In section 4, the same network can then be used backwards to
calculate the dynamic flux distribution for various frequencies and the real asymmetrical thrust bearing (cf. Fig. 2).

Generally, in thrust bearings we can differ between fringing and leakage fluxes as well as passive non–core
fluxes. The latter have no influence on the force, as they do not bypass any air gaps. On the other hand, fringing
fluxes bypass a single air gap in the direction of the force and therefore contribute to it. Leakage fluxes permeate
perpendicular to the force or bypass both air gaps and are not part of the force generating main flux ˘h. The
following core ˘, fringing ˘fl and leakage fluxes ˘ff can be identified unambiguously from the FEA in Fig. 3:

a) Core and Air Gap Fluxes
• ˘ao closes main flux path outside of coil in the outer stator

and defines the total flux ˘t quantitatively.
• ˘giL|R cross the air gaps in the main flux path. They are the

major force–generating fluxes.
• ˘di crosses the disk and rotor and equals the force–

generating main flux, after subtraction of ˘ffdc.

b) Fringing Fluxes ˘fl

• ˘fldioL|R bypass single coil–sided air gap.

• ˘flaiiL|R bypass single shaft–sided air gap.

c) Leakage Fluxes ˘ff

• ˘ffciiL|R bypass between single air gap and shaft, perpendicular
to thrust force. They vanish for high frequencies.

• ˘ffdc bypasses whole disk and therefore both air gaps.

• ˘ffriL|R leak from inner side of the radial core elements RrL|R.
They form negligible flux swirls, which alter their shape
even for small changes of frequency, load or symmetry.
To simplify the network calculation, they are neglected.

d) Passive non–core Fluxes

• ˘ffrcL|R cross the coil through its center. Depending on the sym-
metry, they form swirls only for low frequencies. For high
frequencies they change direction and exclusively by-
pass core elements with no direct impact on the force.

Every one of these non–core fluxes ˘fl|ff is assigned to a
non–core reluctance Rfl|ff. In combination with the core
reluctances R in Fig. 2 (calculated in Seifert et al., 2019)
we obtain the complete reluctance network in Fig. 4.

˘ao

˘ff
dc

˘ff
aoiL ˘ff

aoiR

˘fl|ff
aioL ˘fl|ff

aioR

˘ff
riL ˘ff

riR

˘ff
ciiL

˘fl
aiiL

˘ff
ciiR

˘fl
aiiR

˘di

˘giL ˘giR

˘fl
dioL ˘fl

dioR

Rff
ciiL Rff

ciiR

Rfl
aiiL Rfl

aiiR

RaiL RaiR

RgiL RgiR

Rdi

RaoL RaoR

RcoL

RrL

RciL RciR

RrR

RcoR

Rff
riL Rff

riRRff
rcL Rff

rcRRff
dc

Rfl
dioL Rfl

dioR
C

O
IL

:Z
O

O
M

A
M

P
LI

FI
E

D
F

LU
X

E
S

Indexing: ˘
fl

d i o L

main element inside (i), outside (o), within (c) coil

inner (i), outer (o) edge of element
left (L), right (R) bearing side

Figure 3: Magnetostatic flux distribution of symmetrical
AMTB with omitted bias flux: Identification of fringing ˘fl

and leakage fluxes ˘ff and reluctances from FEA

Physically, the mmf ˆ is a distributed quantity and should be considered by a multitude of sources in the
network. However, since the exact distribution is not known, it would increase the number of unknowns and the
network could not be solved. Rather we place the mmf where the total magnetic flux ˘t is at its maximum: in
the outer stator yoke. To be able to model the swirls ˘ffrcL|R = ˘ffaoiL|R (with ˘ffriL|R neglected), we distribute ˆ to
the outer corners and the center of the stator (Fig. 4). However, to consider the changing directions of the fluxes
˘ffaoiL|R and to keep the network solvable, the manually chosen weighting has to be adapted for the static and
dynamic as well as symmetric and asymmetric case. We remind that in magnetic circuits a mesh is defined asP
ˆi =

PRi˘i , so the sum of mmf sources equals the sum of magnetic voltage drops
PRi˘i .
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Hence, the reluctance network is described by the system of linear equations R·Ψ =Θ with the reluctance
matrix R as well as the vectors Ψ and Θ describing the flux linkages of every mesh and the mmf sources, respec-
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Figure 4: Complete reluctance network including fringing Rfl
i

and leakage reluctances Rff
i

tively. Using Kirchhoff’s circuit laws, the flux linkages

Ψ =
ˆ
¯rL ¯rR ¯cil ¯ciR ¯giL ¯giR ¯goL ¯goR ¯c ¯g

˜T
(2)

are calculated step–wise and the fluxes determined from the
magnetostatic FE–analysis (as indicated in Fig. 3):

¯ciL = ˘ffciiL

¯ciR = ˘ffciiR

¯c = ˘ao

¯rL = ˘ao+˘
ff
aoiL

¯rR = ˘ao+˘
ff
aoiR

¯giL = ˘flaiiL+˘
ff
ciiL

¯giR = ˘flaiiR+˘
ff
ciiR

¯goL = ˘ao−˘ffdc−˘fldioL
¯goR = ˘ao−˘ffdc−˘fldioR
¯g = ˘ao−˘ffdc :

(3)

With more equations the system would be overdetermined,
so the focus lies on the total flux ˘ao = ˘t which can be
quantified exactly and defines the reference flux. For the static and symmetric case the mmf sources are
distributed equally to the stator corners, to maintain the swirl character of ˘ffaoiL|R:

ˆL =ˆR =ˆ=2 and ˆC = 0 leading to the vector Θ =
ˆ
ˆLˆR 0 0 0 0 0 0 ˆC 0

˜T
: (4)

The reluctance matrix R describing the network is composed of the sought–after non–core reluctances Rfl|ff
i

as well as the known analytical solutions for the static part reluctances R0 i from Fig. 2. It is depicted in detail
in Seifert et al., 2021b. To solve the equation system for all Rfl|ff

i e. g. the Gaussian elimination algorithm or a
computer algebra system (CAS) can be used. At this point we omit the last mesh equation for ¯g, as there are
only nine unknown reluctances, but it is later needed for the backward calculation of the leakage fluxes from
the network. The quantitative values of the determined non–core reluctances Rfl|ff

i are summarized in Table 1
and compared with the parallel core reluctances R|| they bypass. It becomes apparent, that in the operational
bandwidth of the thrust bearing (up to 1 kHz) the central leakage reluctances Rff

rcL|R have the least impact and can
be neglected. On the other hand, a comparison of Table 1 with Fig. 5 shows that the high impact of the reluctances
Rfl

aiiL|R and Rff
ciiL|R on the side of the shaft, with 7.8 % and 14 %, respectively, is misleading. The actual fluxes

˘flaiiL|R and ˘ffciiL|R fall below 1 % for more than 1 kHz, due to the magnetic skin effect. This discrepancy can not
be compensated by the reluctance network, as we will show later (cf. Fig. 8).

4. Dynamic Fringing and Leakage Flux Model

Already for frequencies below 1 Hz the magnetic skin effect causes the core fluxes to permeate closer to the
coil. As a consequence, the leakage flux ˘ffrcL|R change their direction, so the mmf–source has to be arranged
centrally in the outer branch of the reluctance network in Fig. 4, such that ˆL =ˆR = 0 and ˆC =ˆ. In the fully
computed reluctance network, we can now substitute the static part reluctances R0 i by the frequency–dependent,
and therefore complex, effective part reluctances Ri (Seifert et al., 2019). For a given mmf ˆ it is then possible
to calculate the mesh flux linkages ¯ and hence every core flux ˘i and non–core flux ˘fl|ff for any frequency.

Table 1: Fringing Rfl
i and leakage reluctances Rff

i determined by
FEA compared to bypassed core reluctances R|| (symmetric case)

Rfl|ff
i in A/Vs R|| in A/Vs R||=Rfl|ff

i

SYMMETRIC CASE: 0 Hz 1 kHz

Rff
rcL|R 2.36 · 107 RsoL|R 1.08 · 104 0.05 % 2.06 %

Rfl
dioL|R 5.94 · 106 RgiL|R 1.01 · 105 2.37 % 6.22 %

Rfl
aiiL|R 3.39 · 106 RgiL|R 1.01 · 105 2.99 % 7.84 %

Rff
ciiL|R 1.89 · 106 RgiL|R 1.01 · 105 5.36 % 14.06 %

Rff
dc 1.51 · 107 Rdi+giL+giR 2.03 · 105 1.34 % 4.18 %

*RsoL|R =RaoL|R+RcoL|R+RrL|R+RciL|R+RaiL|R
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Figure 5: Share of fringing ˘fl and leakage fluxes ˘ff on the
total flux ˘t = ˘ao for the symmetric thrust bearing
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This way, the sole analytical overall effective reluctance Reff can be corrected to the leakage- and fringing–
accounting effective reluctance R′

eff t =ˆ=˘ao =ˆ=˘t, which we compare with a dynamic FEA. Fig. 6 shows,
that the amplitude error of Reff (ca. 1 dB) towards the FEA results can be eliminated almost entirely by the
reluctance network. The leakage and fringing fluxes are also responsible for a considerable decay of the phase
from its theoretical limit of 45° for high frequencies, which is describable by the network as well. Only the modeling
error of the original analytical solution around the eddy current edge frequency fe (cf. Seifert et al., 2019) persists.

4.1 Simplified dynamic reluctance network

The complexity of the complete network (Fig. 4) leads to a significant increase in the system order mS of the
rational form of Reff (Seifert et al., 2019) and is therefore not applicable for the estimator GFE. Hence, we propose
the following simplifications, based on Table 1, Fig. 5 and the qualitative evaluation of the FEA field distribution.

1. The outer axial core reluctances RaoL|R are summed up
to Rao by addition of their characteristic lengths.

2. The fringing fluxes ˘fldioL|R, ˘flaiiL|R (and corresponding re-
luctances) are combined and assigned to the air gap fringing
reluctances Rfl

giL|R:

Rfl
giL|R =

Rfl
dioL|RRfl

aiiL|R
Rfl

dioL|R+Rfl
aiiL|R

: (5)

3. The central leakage reluctance Rff
dc, bypassing both air

gaps, is divided into two equal parts, assigned to a single
air gap each. Together with the leakage reluctance Rff

ciiL|R
on the shaft side, they form the air gap leakage reluctances
Rff

giL|R:
Rff

giL|R =
1
2Rff

dcRff
ciiL|R

1
2Rff

dc+Rff
ciiL|R

: (6)

4. To determine the corrected total effective reluctance
R′

eff t, relating to the total flux ˘ao = ˘t and not considering
the force, we merge Rfl

giL|R and Rff
giL|R to the combined air

gap fringing and leakage reluctance Rflff
giL|R:

Rflff
giL|R =

Rfl
giL|RRff

giL|R
Rfl

giL|R+Rff
giL|R

: (7)

5. The respective “geometrical” air gap reluctances in the
main flux path are equal for both bearing sides, indepen-
dently from the symmetry, so that RgiL|R =Rgi. Further-
more we calculate the arithmetic mean of Rflff

giL|R to obtain
the single corrected air gap reluctance:

R′
gi = 2

`
Rflff

gi || Rgi

´
with Rflff

gi =
1

2
(Rflff

giL+Rflff
giR) (8)

The introduced error of R′
gi compared to RgiL|R || Rflff

giL|R is
only 0.03 %, which is why we also adopt this step for

Rfl
gi =

1

2
(Rfl

giL+Rfl
giR) ; Rff

gi =
1

2
(Rff

giL+Rff
giR) : (9)
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6. As a last step we neglect the transversal reluctances Rff
rcL|R, since their impact for low frequencies is negligible

(cf. Fig. 5). Although in the dynamic case for high frequencies above 1 kHz the respective fluxes ˘ffrcL|R are
dominant, the impact of Rff

rcL|R on the magnitude response of R′
eff t is limited due its passive characteristic.

However, the previously observed phase decay for frequencies above 1 kHz cannot be modeled without Rff
rcL|R,

which is deemed uncritical, as it lies outside of the bearings operating bandwidth. If higher bandwidths require the
consideration of Rff

rcL|R, one should be aware that the system order mS almost doubles.
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As result we obtain the simplified dynamic reluctance network in Fig. 7, which forms the leakage- and fringing–
accounting total effective reluctance R′

eff t =ˆ=˘t by summing up of its part reluctances. Up to ca. 100 Hz both,
the full and the simplified network, lead to identical results. In the further relevant bandwidth up to 1 kHz the
magnitude and phase error remains low with <0.4 dB and <1°, respectively (cf. Fig. 6).

However, in this form the network cannot just yet be applied to the flux estimator, as the magnetic bearing
control relies on the force–generating main flux ˘h =˘f =˘gi+Φfl and not the total flux ˘t as illustrated in Fig. 7.
Consequentially, the force–related total effective reluctance R′

eff f =ˆ=˘f only refers to the force–generating flux
˘f . The results for the accordingly adapted R′

eff f will be shown in section 4.3.

4.2 Transition to Asymmetric Bearing

In the asymmetric real thrust bearing the position of the coil was shifted to the right as depicted in Fig. 2. We
took this measure to equalize the static reluctances of the bias flux paths and therefore enable equal forces in
both air gaps. In terms of fringing and leakage fluxes, we observe that they are facilitated for high frequencies
f > 1kHz especially on the left side of the bearing (Seifert et al., 2021b). Furthermore, the right–sided central
leakage flux ˘ffaoiR remains a swirl, as in Fig. 4, over the entire frequency range, while its left–sided counterpart
˘ffaoiL is always passive (it changes its direction compared to Fig. 4). To account for this asymmetry, the magnetic
voltage source has to be placed in the outer right corner of the network, such that ˆL =ˆC = 0 and ˆR =ˆ. By
this slight adjustment, the full and the simplified reluctance network enables comparable results for the corrected
total effective reluctance R′

eff t like in the symmetric case, at least in the bandwidth below 1 kHz. Quantitative
error data is disclosed in Seifert et al., 2021b.

4.3 Implementation and Conclusion

Previously we indicated, that for the flux estimator not only the corrected total effective reluctance R′
eff t =ˆ=˘t

is decisive, but also the force–related effective reluctance R′
eff f =ˆ=˘f . The latter relates solely to the actual

force–generating part ˘f of the total flux ˘t, which we calculate with the flux divider following Fig. 7. By dividing
both fluxes, ˘f and ˘t, through the mmf ˆ = i ·N and calculating the reciprocal, we obtain the desired form:

˘f =
Rff

gi

Rff
gi+Rgf

˘t with Rgf = 2
Rfl

giRgi

Rfl
gi+Rgi

and Rff
gi = 2Rff

gi
:ˆ
==⇒ R′

eff f =

„
1+

Rgf

Rff
gi

«
R′

eff t : (10)

The implementation of the combined air gap leakage reluctances Rflff
giL|R, leading to R′

eff t, is carried out together
with the calculation of the air gap reluctance Rgi or the air gap element (fractional order ‚ = 1=4) of the equivalent
implicit system REIS (cf. Seifert et al., 2019, eq. (58)) according to (8). In the next step, we derive the force–related
reluctance R′

eff f from (10). All subsequent calculations affect neither the approximations nor the discretization.
Only the system orders mS;nS of the approximated overall system (sum of all part reluctances in Fig. 7 or
equivalent implicit system Seifert et al., 2019) increase – in case of R′

eff t only by 1, regarding R′
eff f , the flux

divider implicates a further increase of the total order by the order mRg of the reluctance Rgi:

mSt =mS+1; nSt =mSt−1 vs. mSf =mS+mRg +1 =mSt+mRg ; nSf =mSf −1 : (11)

However, in Seifert et al., 2019 we proposed to undertake an additional Padé–approximation (PASR), which
overrides the increase in order of mRg = 8 : : :29 (for f < 21kHz). Therefore, the order of the PASR–solution
mP remains equal to the fringing/leakage–free model. This is a considerable advantage compared to the other
proposed approximation method MAEIS, where considering the leakage within R′

eff f increases the total system
order by mRg = (mS+1)=2 = 5 : : :25, limiting the applicability of the approach.

5. Alternative: Constant Correction Factor

The simplest way to take fringing and leakage fluxes into account, is the introduction of constant correction
factors kus t and kus f (relating to the current i ). Without an increase to the system order, we can correct the
total effective reluctance Reff or inductance Leff with the correction factor kus t, by forming the ratio of the static
corrected overall reluctance R′

0t with the static fringing/leakage–free reluctance R0 =Reff(f = 0):

Leff t = kus tN
˘t

i
=
kus tN

2

Reff
=

N2

R′
eff t

⇒ R′
eff t =

Reff

kus t
⇒ kus t =

R0

R′
0t

=R0 ·
˘0t

ˆ
; (12)
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The determination of R0t in (10) or ˘t for that matter, can be conducted by analytical calculation or a FEA.
By using the flux divider from (10) we determine analogously the force–related effective inductance and the
corresponding correction factor kus f :

Leff f = kus fN
˘f

i
=
kus fN

2

Reff
=

N2

R′
eff f

⇒ R′
eff f =

Reff

kus f
⇒ kus f =

R0

R′
0f

=
R0

ˆ=˘0f
=

Rff
gi

Rff
gi+R0gf

R0

R′
0t
: (13)

5.1 Comparison
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Figure 8: Absolute and relative magnitude and phase error
for the force–generating reluctance R′

eff f based on the flux
divider (simplified reluctance network) or correction factor
k
us f in respect to reference FEA

Up to a frequency of 1 Hz the implementation of the force–
related reluctance R′

eff f by means of the flux divider (10) or
the correction factor kus f (13) leads to equal results, as Fig. 8
illustrates. The absolute error in respect to the FEA can be
reduced by 0:35dB to < 0:1dB (stationary) compared to the
fringing/leakage–free Reff , at which point the simulatively de-
termined reluctance is more accurate.

However, as opposed to the corrected total effective re-
luctance R′

eff t (cf. Fig. 6), the force–related reluctance R′
eff f ,

which is based on the flux divider, does not provide satisfying
results in the relevant bandwidth up to 1 kHz. The reason for
this derives from the the shift in the leakage flux distribution
from the shaft to the coil for high frequencies, which cannot be
modeled by the reluctance network. Although occurring errors
cancel each other out for R′

eff t, this is not the case for R′
eff f re-

sulting in an inaccurate representation of the force–generating
flux ˘f . On the other hand, compared to the original analytical
solution the correction factor kus f allows only a slight improvement in accuracy for 1Hz< f < 1kHz (Fig. 8), but
more importantly does not degrade it. Hence we conclude, if the force–generating flux ˘f is to be the focus, the
correction factor is the preferred method.

Furthermore, Fig. 8 reveals a possibly unexpected relation. The errors of
˛̨
R′

eff f

˛̨
in respect to |Reff | are

smaller than in the case of R′
eff t and remain negative. This in turn means that

˛̨
R′

eff f

˛̨
is smaller than |Reff | and

the force f is actually increased by the presence of fringing and leakage fluxes. Although, the force–generating
flux ˘f is indeed smaller than the total flux ˘t (reduced by ˘ff), the fringing and leakage fluxes cause a general
reduction of the total reluctance

˛̨
R′

eff t

˛̨
≪ |Reff | and thus an increase of the actuator force. In our case the

latter effect is dominant, resulting in correction factors k
us t|f > 1. But it is important to note, that this observation

cannot be generalized for all actuators or magnetic bearings and is only probable in case the force–generating
fringing fluxes dominate over the leakage fluxes.

5.2 Correction of Flux Estimator

By recalling the definition of the flux estimator from (1), we see that there are multiple occurrences of the
effective inductance Leff and its stationary counterpart Lh = lim!→0Leff(j!), the main inductance. While the
first term is the actual force–related field building component, which we correct with the factor kus f , the second
term describes the magnetizing currents, that relate to the total flux ˘t. Hence, the latter has to be corrected with
the factor kus t finally leading to:

G′
FE(j!) =

˘f est(j!)

imeas(j!)
=
Lhf
N|{z}

force–related: field

·

measurable: magnetizing currentz }| {
RCu+ sLeff t(j!)

RCu+ sLht| {z }
magnetizing current

; (14)

Whether or not this differentiation is appropriate depends on the actuator geometry and the balance between
fringing and leakage fluxes. In our case kus f and kus t differ by considerable 5.2 % and its inclusion comes at no
cost. We note, that in fact the main inductances Lht and Lhf are not directly affected by the magnetic skin effect,
but by the redistribution of the fringing/leakage fluxes. We still assume them to be constant. Theoretically, it would
be possible to isolate the frequency–dependent influence of these non–core fluxes and project them on the main
inductances as well. However, the improvement would be very low compared to the additional computing effort.
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6. Conclusion and outlook

The control of electromagnetic actuators and magnetic bearings usually relies on simplified models and
perturbations like eddy currents, hysteresis, saturation, fringing and leakage fluxes are omitted. Especially in
case of nonlaminated cores, it is widely accepted that eddy currents have a significant impact on the actuators
performance and should be considered within the design of the control. In previous works we laid the groundwork
for the first practical digital implementation of a flux estimator to fully compensate eddy currents in the inner
actuator control loop. The considerably minor perturbations fringing and leakage remain solely subjects of
academic research. Although various studies exist, they are usually limited to the analytical modeling and
FE–analyses of the actuator. For the first time, we discussed the actual applicability of the known analytical
models to control design and further improved them.

Our study regarding the fringing and leakage fluxes in a magnetic thrust bearing shows, that the practicality of
a reluctance network highly depends on whether the total flux ˘t and its respective corrected total reluctance
R′

eff t is of interest or the actual force–generating flux ˘f relating to R′
eff f . In the former case, the proposed

networks can significantly reduce model errors (static: 11.8 %) by 10 percentage points over a wide range of
frequencies. The full reluctance network is only beneficial over the simplified network for less relevant frequencies
above 1 kHz, where the characteristic phase drop is reproduced. In the bandwidth of interest below 1 kHz both
networks are equally accurate. In the latter case, due to the magnetic skin effect, neither the full nor the simplified
reluctance network can model the changing flux distribution for frequencies above 1 Hz, leading to an incorrect
representation of the force-generating flux ˘f and its according reluctance Reff f . However, constant correction
factors, possibly greater than 1, reduce the model errors (static: 6.4 %) by satisfying 5.6 percentage points. Since
they do not increase the system order and are most simple to implement we deem them to be the preferred
variant for the flux estimator and control models in general.

We conclude, that our findings in this article only slightly improve the previously proposed flux control based
on a fractional–order flux estimator. However, for the commonly omitted and supposedly minor perturbations
fringing and leakage fluxes, we provided an extensive review about modeling approaches and discussed their
impact as well as practical applicability as reference for future studies.
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