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Abstract

In this work, linear observers for a three-pole active magnetic bearing (AMB) were
designed and simulated, considering the AMB modelled as a linear dynamical system. Al-
though the system being nonlinear, under the assumption of lower speeds, the linearized
model can behave similarly to the nonlinear model. The linearized model was made from
the reluctance forces equations and, as the system is naturally unstable, Linear Quadratic
Regulator (LQR) was used to stabilize the system. The state vector contains both the
horizontal and vertical sensor measurements, and also their derivatives, that are not mea-
sured. For the state feedback with LQR, it is necessary to have all the state vector data,
and linear observers are a way to obtain the non-measured states. Observation errors for
the full and reduced order linear observers are then compared.

1 Background

Active magnetic bearings are mechatronic devices that allow spinning rotors to operate contact-
less, providing the possibility to achieve high speeds with low bearing losses, with a controllable
dynamic that can change the suspension’s stiffness to different applications or states of opera-
tion [1]. Magnetic bearings are suitable for situations that demand the conditions mentioned
above, as well as high efficiency, low maintenance and green operation, some examples are in
turbomachinery, flywheel energy storage applications, machines in aerospace, and industries
that require clean environments, like food and pharmaceutical industry [2].

The majority of magnetic bearings installed in industries uses the eight poles geometry, that
produces four uncoupled magnetic fluxes to balance the rotor [3]. However, further research
suggested other configurations, such as 4-pole and 3-pole, both with coupled magnetic fluxes.
One way magnetic bearings can be modelled is through reluctance forces, and analytically is
possible to verify that they have very strong nonlinearities in relation to the base current, the
control current, the number of turns, the air gap and the rotor’s positions. In [4], the reluctance
forces from the 8-poles and 4-poles magnetic bearings were analytically obtained, linearized and
compared.

The main advantages of the 3-pole AMB in comparison to other geometries is that it re-
quires fewer actuators, has smaller remagnetization frequency resulting in lower iron losses and
allows more space to place sensors and to dissipate heat, being very convenient for low-cost
applications [5]. The main disadvantage is the higher complexity in the design and implemen-
tation of nonlinear controllers. One of the first studies proposed to overcome this problem was
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[6], providing an exact linearization via feedback. Even though the techniques and the imple-
mentation of nonlinear controllers have been more feasible over the time, the study of linear
control implementation are valid in some conditions, like constant and low rotor speed, and
smaller rotor displacements.

Through the equations of motion and the relations between the linearized reluctance forces
and control currents it is possible to model the system with rigid rotor and active magnetic
bearings in the state-space form [4, 7]. The proper modelling allows to directly apply some
techniques like state-space analysis with linear state-feedback, as well as optimal control and
state observers, subjects discussed in detail in the control literature [8, 9, 10].

2 Discussion

This paper addresses the observation errors comparison of a three-pole magnetic bearing, mod-
elled as a linear dynamical system with linear observers to estimate the states not measured.
The responses using the full and reduced order observer will be compared. The 3-pole magnetic
bearing considered is in the optimal configuration, as proposed in [5]. This optimal design
considers the bearing supporting a rotor in a horizontal position and π/6 orientation, ensuring
stability and base currents that minimizes the iron loss. Besides that, it also allows to reduce
one actuator from the scheme by using only one coil wiring to the two upper poles, as shown
in Figure 1.
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Figure 1: 3-Pole Magnetic Bearing in optimal design.

The stabilization problem in this work refers to control the differential currents in order to
view how the rotor’s center position changes over the time. As the region of study is close to
the desired center point, linearization and linear control appears as valid tools for the analysis.
Some examples of studies that have been made with the nonlinear control approach are in [11],
[12] and [13]. For the linear approach, the detailed procedure on how to obtain the horizontal
and vertical reluctance forces (fx and fy), here presented in (1), and how to model the system
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using these equations are in [7]1. The linearized reluctance forces for the 3-pole AMB are:

fx =
1

2
gpx+

√
3

3
gii1, fy =

1

2
gpy + gii2 (1)

where

gp =
µ0 A n2 i20

h3
, gi =

µ0 A n2 i0
h2

, (2)

µ0 is the permeability of free space, A is the pole’s surface area, n is the coils turns number, h
is the gap’s size, i0 is the coil base current, i1 and i2 are the coils differential currents, used as
inputs to the rotor’s position control.

The mechanical system model in state space for the 3-pole magnetic bearing considered the
operation in a condition with disturbances, very close to what should be in a real condition.
The external actions considered were the ones due to the torques from: the magnetic force, the
gravitational force and the supporting bearing. Using the equations from the classic rotational
dynamic and doing some algebrism, all detailed in [7] and [4], it is possible to set the model in
state space form:

ẋ(t) = A(ω)x(t) +Bu(t), y = Cx (3)

in which matrices A(ω), B and C, the state vector x and the control inputs u are shown in (4),
(5) and (6) :

A(ω) =

[
02 I2
K1I2 −Ge(ω)

]
, B =

[
02
K2I2

]
, (4)

C =
[
I2 02

]
, x =

[
xs ys ẋs ẏs

]T
, (5)

u =
[√

3
3 i1 i2

]T
(6)

where the constants K1, K2 depends on design parameters, the 2x2 matrix Ge depends on
design parameters and also rotor speed, as shown in [7], the 02 is the 2x2 zero matrix, the I2 is
the 2x2 identity matrix, xs and ys are the sensors’ displacement measurements.

This open loop model is unstable, as the state matrix has poles with positive real part, so
a closed loop control is necessary to stabilize the system.

With the linearized model in state space form, it is very straightforward to verify that the
system is observable, controllable, and the LQR is an option to stabilize the system, as this
state feedback control can relocate the closed loop eigenvalues to have negative real parts. The
LQR control in magnetic bearing has potential problems with robustness due to parameters
uncertainties and instability with different speeds [1]. As in this work we consider the system
with negligible modelling uncertainties and with constant rotational speed, LQR should be
viable for analysis.

The performance index V for the infinite horizon LQR is the integral of two quadratic forms
sum:

V (x,u, t0) =

∫ ∞

t0

(xTQx + uTRu)dt, (7)

where Q is a symmetric semi-positive definite matrix and R is symmetric positive definite. As
the origin is considered the reference position (r = 0), for this problem the LQR control input
u is given by

u = Fx, (8)

1In this reference there are typos in equations (41), (51) and (67), the negative signs should be positive

3



Linear Observers Design for a Three-Pole Magnetic Bearing Vasco, Corrêa, Mothé, David and Gomes

where
F = −R−1BTP, (9)

with P being the solution to the Algebric Ricatti Equation (ARE). The diagram for the LQR
state feedback is shown in Figure 2.
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Figure 2: State feedback diagram.

But the implementation of the LQR control assumes that the states ẋs and ẏs are available,
which usually is not the case. To obtain them, one option is to use sensors for direct measure,
but it adds more cost to the set. The other option is to differentiate the signals of xs and ys, but
with the inconvenience of amplifying the high frequency noise. In practical applications, digital
computers are used, so the differentiation is obtained by subtracting the value of one sample
to the value of one prior and dividing the result to the sample time. It is also common the use
of filters to minimize the effect of noise. In this work we will design the full-order observer and
the reduced-order observer theoretically and compare the simulated responses.

Both observers use the system’s input and output to estimate the states [9], with the full
order observer estimating all the states, regardless if they are already available or not, and
the reduced-order observer estimating only the non-measured states. Then the estimated state
vector x̂ is used to feedback to the system’s input. For the full-order observer, the diagram is
in Figure 3.
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Figure 3: Estimated state feedback with full-order observer.

Detailing the Observer block in Figure 4, the full-order observer will contain a replica of
the system matrices A, B and C, with the estimation error e being used by the replica system.
The observer gain L must be chosen to allow e to exponentially decay to 0 for any error initial
condition [14], and the observer dynamic also needs to be faster than the system dynamic. In
this work we choose the eigenvalues of A−LC to be 5 times faster than the closed-loop system
eigenvalues.

As the system in study is fully controllable and observable, the separation principle allows
to independently do the pole placement design and the observer design [9], as the extended
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Figure 4: Detailed full-order observer block.

system equation is given by equation (10):

[
ẋ
ė

]
=

[
A+BF −BF

0 A− LC

] [
x
e

]
, (10)

where the estimation error e is the difference between the system output y and the estimation
output ŷ,

e = y − ŷ = C(x− x̂). (11)

The reduced order observer allows estimating only the non-available states, by separating
the state x and matrices A,B and C in two parts: the available part and the unavailable part,
here identified with subindices a and u, respectively. The diagram for the state feedback with
reduced order observer is presented in Figure 5.

x̂
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Figure 5: Estimated state feedback with reduced-order Observer.

Detailing the reduced-order observer and the transformation block in Figure 6, the matrices
Â, B̂, Ĉ, D̂ and Ĝ are expressions related to the available and unavailable parts of the system
matrices as well as the observer gain for the reduced system, here given by Lr.
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Figure 6: Detailed reduced-order Observer block and Transformation block.

Following [9], the dynamical system can be rewritten in the following form:

ẋ =

[
ẋa

ẋu

]
=

[
Aaa Aau

Aua Auu

] [
xa

xu

]
+

[
Ba

Bu

]
u, (12)

y = C

[
xa

xu

]
=
[
I2 02

] [xa

xu

]
= xa. (13)

The matrices Â, B̂, Ĉ, D̂ and Ĝ, indicated in Figure 6, are given by:

Â = Auu − LrAau, (14)

B̂ = ÂLr +Aua − LrAaa (15)

Ĉ =
[
02 I2

]T
, D̂ =

[
I2 Lr

]T
(16)

Ĝ = Bu − LrBa (17)

The matrices Ĉ and D̂ are necessary to reconstruct the full state with the available part
coming from the output and the unavailable part coming from the reduced-order observer.
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3 Results

The rotor speed initially considered for the simulation was ω = 356 rad/s, the base current
i0 = 0.23 A, and the design parameters K1,K2 and Ge from equation (4) are given by:

K1 = 3101.24, K2 = 19.76, (18)

Ge =

[
0.51 10.22
−10.22 0.51

]
. (19)

For Q = I4 and R = I2, the feedback gain matrix F is given by:

F =

[
311.27 28.24 5.68 0
−28.24 311.27 0 5.68

]
, (20)

and the system’s closed-loop eigenvalues are −46.45± j4.21 and −66.2± j6.01.
A simulation was made to compare the responses for the nonlinear model when subjected

to the same linear control used by the linear model, to evaluate if the responses were similar.
The schemes used are shown in Figure 7.
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Figure 7: LQR control applied to the linearized and nonlinear model

The differences between the linearized and the nonlinear control responses depends on the
rotor speed. They are negligible when ω = 356 rad/s, as can be seen in Figure 8a, but for
ω = 3204 rad/s, for example, the differences become significant, as can be seen in Figure 8b.
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(b) When ω = 3204 rad/s

Figure 8: LQR Outputs to the linearized and nonlinear models

For the linearized system with rotor speed ω = 356 rad/s, the full-order observer gain L
was designed considering the observer eigenvalues 5 times faster than the closed-loop system
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eigenvalues, resulting in

L =




580.20 −21.77
−8.33 545.49

8.59× 104 −6.14× 103

2.65× 103 7.49× 104


 . (21)

For an initial condition x0 =
[
0.2 −0.2 0 0

]T
and an observer initial condition x0−obs =[

0 0 0 0
]T

, the observation error for each state of the full order observer is presented in
Figure 9a.

As for the reduced-order observer design, the observer gain Lr was designed considering the
eigenvalues of the unobservable part being 5 times faster than the eigenvalues of the observable
part, resulting in:

Lr =

[
231.75 −10.22
10.22 231.75

]
. (22)

From equations (14), (15), (16) and (17), the reduced-order observer matrices Â, B̂, Ĉ, D̂
and Ĝ are:

Â =

[
−232.26 0

0 −232.26

]
, (23)

B̂ = 104 ×
[
−5.07 0.24
−0.24 −5.07

]
(24)

Ĉ =
[
02 I2

]T
, D̂ =

[
I2 Lr

]T
, (25)

Ĝ =

[
19.76 0

0 19.76

]
, (26)

and the corresponding observation errors for each state, for the same initial conditions men-
tioned above are shown in Figure 9b.
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Figure 9: Observation errors when ω = 356 rad/s

In the noiseless conditions simulated, the reduced-order observer presented slightly better
transient response performance over the full-order observer, with observation errors for the non-
measured states about 5 ms faster than the full-order observation errors. In noisy environment,
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it is expected to see fewer advantages from the reduced-order observer due to more non-limited
bandwidth noise in xu [10], partly because of the memoryless transformation of y. It was not
seen differences in estimation errors from figures 9a and 9b when simulating with speeds lower
ω = 1780 rad/s, approximately. For larger speeds, the difference between the nonlinear and
linear outputs become significant, and the linear model isn’t a good approximation.

4 Conclusions

We have shown how to design linear Luenberger observers for the 3-pole active magnetic bearing.
The use of observers in magnetic bearings applications was considered because they can be
modelled as a linear dynamical system via linearization of the reluctance forces. Both the full-
order and the reduced-order observers could estimate the non-available states in close times,
with the full-order observer in about 20 ms and the reduced-order observer in 15 ms, although
it had larger initial error than the full-order. The shaft’s rotation speed affected the linearized
model performance, with it being very close to the nonlinear model for lower speeds, until
about ω = 1780 rad/s. For larger speeds, the linearized model responses have larger differences
to the nonlinear model responses. This analysis shows that the use of the observers with the
linearized model is suitable for problems where the application doesn’t require very high speeds.
More studies involving observers and digital differentiation in magnetic bearings will be done
in future work.
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