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Abstract

Active Magnetic Bearings (AMB) are devices that support a shaft, showing the advan-
tage of having no contact with any rotating parts, thus eliminating wear and the need of
lubrication. Intrinsically, these equipments are unstable and, therefore, a control strategy
is necessary in order to stabilize the system. One of the most used state-space feedback
method is the Linear Quadratic Regulator (LQR). This paper aims to simulate and compare
the eight, four and three-pole AMB with the centralized, decentralized and two-parameter
decentralized LQR control strategies. After deducting the reluctance force equations and
the system dynamics equations for each of the geometries, several simulations were per-
formed. The results were conclusive and indicated the preference to use the two-parameter
decentralized controller, due to the shorter stabilization time and the control variables
decoupling, among other factors.

1 Background

Bearings are fixed devices used as a support for rotating axes. Besides that, they allow the
relative movement between two surfaces. In a mechanical bearing, due to the contact between
the shaft surface and the bearing surface, frictional forces show up. This is a considerable
problem as it wears out the machine elements. A possible solution to mitigate this issue is the
use of lubricating oils and bushings [1]. In some applications, such as pharmaceutical and food
industries, employing general-purpose lubricants is not allowed due to possible contamination
[2].

Active Magnetic Bearings (AMB), commonly known as Magnetic Bearings, come as a rea-
sonable solution to overcome the problems presented above. The component’s overheating
caused by friction is eliminated in this scenario since there is no direct contact between the
rotating parts. This type of non-contact bearing is based on the generation of restorative forces
caused by electromagnets placed in strategic points. An active control scheme is necessary to
stabilize the system considering its inherently unstable feature [3].

Currently, three widespread Magnetic Bearings configurations are addressed in the litera-
ture: eight-pole, four-pole and three-pole geometries [4]. In some specific applications, six-pole
and twelve-pole bearings can also be used. The differences refer to heat dissipation, energy con-
sumption, manufacturing cost and symmetry [5]. Each of them presents a different modelling
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as a result of its own reluctance forces and (un)coupled magnetic fluxes, as will be shown later
in this paper.

This work aims to present different comparisons between the eight-pole, four-pole and three-
pole geometries of AMBs. In order to carry out the comparative study, three optimal control
schemes (all of them based on the Linear Quadratic Regulator approach) will be used – cen-
tralized, decentralized and two-parameter decentralized. Simulations are done, and compared
in each of the proposed geometries, to visualize if the rotor is kept in the central position when
the active control, based on state space analysis, is used.

2 Discussion

The first step in order to compare the geometries is to find the reluctance forces in each possible
configuration – i.e., it is necessary to model the system. Consider an 8-pole Magnetic Bearing
shown in Figure 1. This configuration is the most used in industrial applications [5].
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Figure 1: 8-pole Magnetic Bearing

As one can see in Figure 1, this configuration has uncoupled magnetic fluxes (represented
in green). The following development is based on references such as [6, 2]. A position control
scheme can be implemented independently – one for the x direction and one for the y – due to
electromagnets’ symmetry.

Reluctance forces equations rely on two control variables – il(t) and ir(t), for the x direc-
tion; iu(t) and id(t), for the y. This situation can be problematic in a control point of view.
Differential currents approach may be applied so that ix(t), or iy(t), will be the only control
variables [7].

The resulting equations are nonlinear, but considering that the bearing operates near the
operating point (ix(t) ≈ x(t) ≈ 0) under normal conditions, Taylor series can be applied, which
allows a linearization of the proposed model for the x direction. Likewise, the same procedure
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is done for the y.

The linearized reluctance forces for the 8-pole AMB are presented in (1):

Fx(t) = gpx(t) + giix(t) and Fy(t) = gpy(t) + giiy(t) (1)

where

gp =
µ0N

2
a Aa i

2
b

h3
and gi =

µ0N
2
a Aa ib
h2

(2)

are the magnetic constants.

A more compact geometry, allowing a cheaper structure and more space for heat dissipation,
called 4-pole Magnetic Bearing, is being used in many applications [8, 9]. Consider a 4-pole
Magnetic Bearing shown in Figure 2. The following concepts are based on [6].
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Figure 2: 4-pole Magnetic Bearing

The main difference between the 8-pole and 4-pole geometries is that the latter has an
interconnection of magnetic fluxes [10]. It is important to mention that the symmetry detected
in an 8-pole Magnetic Bearing is kept here. The same mathematical procedure to obtain the
reluctance forces may be developed, but now taking into account the fluxes interconnection.

One may notice in Figure 3 the interconnected magnetic flux distribution caused by current
ir(t). The notation φmn refers to the magnetic flux that crosses the m pole due to the current
that circulates at the n pole. The reluctance forces in this geometry rely on the total magnetic
flux φm (for each pole m) which is a function of the partial fluxes φmn, as can be seen in (3):

φr = φrr + φru − φrl + φrd φu = −φur − φuu − φul + φud

φl = −φlr + φlu + φll + φld φd = −φdr + φdu − φdl − φdd
(3)
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Figure 3: 4-pole interconnected magnetic flux distribution associated only with the current ir(t)

A step by step mathematical development can be seen in [6]. The linearized reluctance
forces for the 4-pole AMB are presented in (4):

Fx(t) = gpx(t) + giix(t) and Fy(t) = gpy(t) + giiy(t) (4)

where

gp =
2µ0N

2
b Ab i

2
b

h3
and gi =

2µ0N
2
b Ab ib
h2

(5)

are the magnetic constants. These values have an extra factor of 2 when compared to the first
topology, shown in (2); this means that the magnetic constants of a 4-pole AMB are, at least,
2 times higher than in the 8-pole case.

Although this geometry uses interconnected fluxes, the reluctance forces are decoupled from
each other, as demonstrated in (4).

An even more compact structure, the 3-pole AMB, has been studied over the past few years
[2, 5]. Consider a 3-pole AMB in an optimal configuration shown in Figure 4. In this design, we
shall consider a horizontal rotor being supported by the device. This scheme has the minimum
number of poles able to balance the rotor, allowing a better heat dissipation and lower iron
losses [11, 5].

In this asymmetric configuration (due to the odd number of poles), it is possible to use one
less actuator as two poles share the same coil wiring [11, 12]. The modelling process is very
similar compared to the other geometries but interesting since an odd number of poles causes a
disbalancing in the reluctance forces. One may notice in Figure 5 the interconnected magnetic
flux distribution caused by current i1(t). The total magnetic flux φm (for each pole m) is a
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function of the partial fluxes φmn, as can be seen in (6):

φ1 = φ11 + φ12 + φ13 φ2 = −φ21 − φ22 + φ23

φ3 = −φ31 + φ32 − φ33
(6)
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Figure 4: Optimal configuration of a 3-pole Magnetic Bearing
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Figure 5: 3-pole interconnected magnetic flux distribution associated only with the current i1(t)
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A step by step mathematical development can be seen in [13, 11, 2]. The linearized reluctance
forces for the 3-pole AMB are presented in (7):

Fx(t) =
1

2
gpx(t) +

√
3

3
giid3 and Fy(t) =

1

2
gpy(t) + giid1 (7)

where

gp =
µ0N

2
c Ac i

2
B1

h3
and gi =

µ0N
2
c Ac iB1

h2
(8)

are the magnetic constants. It is not straightforward to compare the 3-pole AMB reluctance
forces to the other results, since the differential currents are not restricted to just one axis.
However, keeping the currents in the same magnitude order, the reluctance forces in the 3-pole
AMB are lower than those of 8-pole and 4-pole AMBs.

State space models are an important tool, considering a later application of a linear control
technique. The dynamic analysis considers a rigid and homogeneous shaft. Further details are
presented in [1, 2, 10].

The first two geometries (8-pole and 4-pole AMBs) share the same model pattern. State
space representation is shown in (9):

ẋ(t) = Ax(t) +Bu(t) +Dv(t) (9)

where the matrices A, B and D have structures defined in (10):

A =

[
0 I
A21 A22

]
B =

[
0
B2

]
D =

[
0
D2

]
(10)

where the blocks A21, A22, B2 and D2 are 2×2 matrices that depend on the constructive param-
eters of the existing prototypes [1, 2, 10]; block A22 depends on the rotor speed. The prototypes
are equipped with sensors that measure the rotor position in two orthogonal directions: xs and
ys. These signals, together with the corresponding velocities, are the state vector components,
as shown in (11):

x =




xs
ys
ẋs
ẏs


 u =

[
ix
iy

]
v =

[
cos (ωt)
−sin (ωt)

]
(11)

The control vector u components are the differential currents injected in the AMB coils.
An extra (small) mass can be attached to the rotor of the examined prototypes; this allows the
study of unbalanced masses in the rotational dynamics. The net effect of this lack of symmetry
is the appearance of the harmonic disturbances in vector v that enter the model through D.

A different procedure must be done for the 3-pole AMB as the reluctance forces are different
and the torque from gravitational force should be taken into account since the rotor is in
the horizontal position. The standard state space representation shown in (9) and matrices
presented in (10) are valid here as well.

The state space vector x, control inputs u and disturbance vector v are chosen to be the
ones shown in (12):
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x =




xs
ys
ẋs
ẏs


 u =



√

3

3
id3

id1


 v =

[
cos (ωt)
−sin (ωt)

]
(12)

As we are working with an approximate linear model, these equations are accurate only
around the operation point. Besides that, one can represent this as a linear and time-invariant
system if and only if a constant value is fixed for ω.

Some control strategies can be used in an AMB system, such as PID [14], pole placement
technique [15] and H∞ regulator [16]. This paper addresses the use of an optimal control
strategy based on Linear Quadratic Regulator (LQR) theory [1, 17, 18].

Consider a block diagram, in Figure 6, that illustrates a full state feedback. The controller’s
goal is to drive the closed-loop poles to a desired position, stabilizing the rotor.

∑
r B

u ∑ ∫ẋ
C

x y

A

F

Figure 6: Full state feedback block diagram

LQR control has an advantage, compared to pole placement technique, of providing a sys-
temic and automatic procedure to calculate the feedback gain matrix [17]. LQR perfomance
index J is defined by two quadratic functions and can be expressed by (13):

J =

∫ ∞

0

(xT (t)Qx(t) + uT (t)Ru(t)) dt (13)

where the weighting matrix Q (state error) is symmetric positive semidefinite and the weighting
matrix R (energy consumption) is symmetric positive definite.

Considering a controllable system and that all states are observable and available (here x
and y are measured and ẋ and ẏ are estimated), we can write (14):

u∗ = F ∗x (14)

where u∗ is the optimal control law that minimizes J , through the feedback gain matrix F ∗,
given by (15):

F ∗ = −R−1BTP (15)
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in which P is the solution of an algebraic matrix Riccati equation, as can be seen in (16):

ATP + PA− PBR−1BTP +Q = 0 (16)

In this work, three LQR control techniques are designed and simulated. The first one,
named here as centralized LQR (LQRc), refers to the “traditional” LQR, where all states are
fedback and interact with each other, which can be seen in (17):

u = F ∗c x =⇒
[
u1
u2

]
=

[
f11 f12 f13 f14
f21 f22 f23 f24

]
x (17)

In most cases, all F ∗c (centralized) matrix elements are nonzero, since there is a well-defined
connection between every single state. This leads to a greater computational effort.

An alternative and interesting solution would be the presence of some zero elements in the
feedback gain matrix, as this would alleviate the control implementation. This is possible using
the decentralized Linear Quadratic Regulator (LQRd). In a gain matrix F ∗d (decentralized),
each one of the two input variables is decoupled and independent of the other. That is to say,
each input is related only to an output and its derivative, as shown in (18):

u1 = f11xs + f13ẋs and u2 = f22ys + f24ẏs (18)

Further details are presented in [7, 19]. The decentralized structure can be expressed by
(19):

u = F ∗dx =⇒
[
u1
u2

]
=

[
f11 0 f13 0
0 f22 0 f24

]
x (19)

The necessary conditions for F to satisfy (19) and minimize J in (13) are in [19, 20]; they
lead to an algorithm that will be used in the sequel.

The work developed in [19] comes up with an even more particular structure. As it relies
on two parameters, this control law is called two-parameter decentralized Linear Quadratic
Regulator (LQRPD2p). Similar to the previous case, input variables are decoupled, taking into
account only their position and speed on the interest direction. The difference here is that an
additional restriction is imposed on the control law, making it simpler. The LQRPD2p structure
is as follows:

u = F ∗2px =⇒
[
u1
u2

]
=

[
p 0 d 0
0 p 0 d

]
x (20)

Only two parameters appear in the feedback matrix: p for the xs and ys and d for the
derivatives. All the existence conditions for this problem, as well as an algorithm leading to
the solution can be found in [19]. These results will be used in the next section, but will be not
presented here.

3 Results

The magnetic constants gp and gi are determined using the prototype’ geometric parameters
[6, 10], in addition to the base current ib (8-pole and 4-pole) or iB1 (3-pole).

8
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Considering ib = iB1 = 0.52 A [2], the first simulation set is performed, comparing all three
geometries in different control schemes. The operating speed ω used is 21 rad/s (approximately
200 rpm), 356 rad/s (about 3400 rpm) and 942 rad/s (roughly 9000 rpm). Figure 7 shows the
centralized LQR response for each speed and geometry.

time (miliseconds)
0  20 40 60 

x
s
(m

il
li
m
et
er
s)

0   

0.02

0.04

0.06

0.08

0.1 

0.12

0.14

0.16

0.18

0.2 

xs versus t – LQRc – ib = iB1 = 0.52 A

4-pole ω = 21 rad/s

4-pole ω = 356 rad/s

4-pole ω = 942 rad/s

8-pole ω = 21 rad/s

8-pole ω = 356 rad/s

8-pole ω = 942 rad/s

3-pole ω = 21 rad/s

3-pole ω = 356 rad/s

3-pole ω = 942 rad/s

Figure 7: Centralized LQR response

As can be seen, the 4-pole AMB is the fastest to return to equilibrium. In second place,
comes out the 8-pole Magnetic Bearing, and finally the 3-pole. However, when the rotor op-
erating speed is increased from 200 rpm to 3400 rpm (and after from 3400 rpm to 9000 rpm),
we have a slightly longer settling time – this is noticed in all geometries. Four-pole geometry
settling time variations (after increasing the operating speed ω) are much smaller than the
others, as can be seen in Figure 7 and in Table 1.

Table 1: Comparison between LQRc, LQRd and LQRPD2p: settling time – ib = iB1 = 0.52 A

Settling time (in ms) – ib = iB1 = 0.52 A

ω = 21 rad/s ω = 356 rad/s ω = 942 rad/s

LQRc 8-pole: 42.9 8-pole: 43.9 8-pole: 45.2
4-pole: 30.8 4-pole: 31.3 4-pole: 32.0
3-pole: 61.7 3-pole: 63.6 3-pole: 65.3

LQRd 8-pole: 43.0 8-pole: 44.1 8-pole: 44.7
4-pole: 30.9 4-pole: 31.6 4-pole: 32.9
3-pole: 61.8 3-pole: 64.6 3-pole: 70.3

LQRPD2p 8-pole: 42.7 8-pole: 40.0 8-pole: 36.2
4-pole: 30.6 4-pole: 29.4 4-pole: 27.3
3-pole: 61.3 3-pole: 56.0 3-pole: 50.7
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For the decentralized LQR control strategy, a similar simulation is done, as can be noticed
in Figure 8.
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Figure 8: Decentralized LQR response

When one compares LQRc to LQRd response, the latter presents a small decrease in the
eigenvalues’ real part (the only exception is the 8-pole AMB with ω = 942 rad/s) – therefore,
a minimal settling time increase is expected in this control strategy, as exposed in Table 1.

The last control method to be simulated is the two-parameter decentralized LQR (LQRPD2p).
Figure 9 exhibits its response.
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Figure 9: Two-parameter decentralized LQR response
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Similarly to LQRc and LQRd strategies, the 4-pole AMB is the one that returns faster
to the center position (regardless of ω), followed by the 8-pole, and finally the 3-pole geom-
etry. In this strategy, one can see, in Table 1, a shorter settling time, for all geometries and
ω. In fact, LQRPD2p control strategy provides an optimal gain matrix, and the closed-loop
system response is fast enough. Notice that as the rotor speed increases, the centralized and
decentralized strategies present a longer settling time, whereas in the LQRPD2p case this time
decreases.

In order to compare the prototype’s performance against disturbances, a 1 gram unbalance
mass is placed on the rotor, causing an orbital motion due to the appearance of harmonic forces.
Hence, xs would not go to zero, unlike Figure 7 (where disturbances were not considered), for
example.

Each control strategy is compared, in order to analyze a given AMB geometry. For the
centralized LQR, considering a low rotation speed, Figure 10a shows xs by ys curves for the
eight, four and three-pole geometries. It can be seen that the orbital motions for the 4-pole
geometry are smaller than the 8-pole, which are smaller than the 3-pole. The lower are the
orbital movements, the more rigid is the suspension, featuring a better performance against
disturbances.
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Figure 10: Orbital motion – ω = 21 rad/s
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For the decentralized LQR (Figure 10b) and the two-parameter decentralized LQR (Fig-
ure 10c) cases, it is clear that the response curves, in the three control strategies, are nearly
the same, given the low rotation speed.

With the increase of the rotation speed to 356 rad/s, it is apparent the higher influence of
harmonic forces on the xs and ys response curves. This happens because the torque caused by
the unbalance mass depends on the square of the rotor speed. Nevertheless, the 4-pole AMB is
the one with the best performance, as can be seen in Figure 11a.

The same comments made, when considering the speed of 21 rad/s, are valid here. When
looking at Figure 11b, the decentralized control strategy does not show any difference in the
orbital motion, when compared to the centralized control. In a like manner, the two-parameter
decentralized control (Figure 11c) displays a very similar response due to disturbances.
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Figure 11: Orbital motion – ω = 356 rad/s

Another important fact concerns the number of iterations necessary to stabilize the system:
the two-parameter decentralized strategy proved to be equally or more effective in almost all
simulations and geometries (7 out of 9 cases). Table 2 shows this fact.
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Table 2: Comparison between LQRd and LQRPD2p: number of iterations – ib = iB1 = 0.52 A

Number of iterations – ib = iB1 = 0.52 A

ω = 21 rad/s ω = 356 rad/s ω = 942 rad/s

LQRd 8-pole: 2 8-pole: 6 8-pole: 15
4-pole: 8 4-pole: 11 4-pole: 15
3-pole: 2 3-pole: 8 3-pole: 28

LQRPD2p 8-pole: 3 8-pole: 5 8-pole: 8
4-pole: 2 4-pole: 4 4-pole: 6
3-pole: 3 3-pole: 5 3-pole: 10

With what has been shown so far in this paper, it seems that the two-parameter decentralized
control strategy is the best of all simulated. In order to analyze the control signal of the three
strategies, another simulation is performed, using as reference the 4-pole geometry and a rotor
speed of 356 rad/s. This choice is justified by the fact that the 4-pole AMB is the one with the
shortest settling time and the most rigid suspension among all studied. Thus, it is interesting
to analyze how the control signal varies over time for this geometry. Moreover, an average
operating speed (ω = 356 rad/s) is adopted, since, as presented in the simulations, changing ω
does not significantly change the settling time.

As the LQRPD2p was the one that presented the shortest settling time of all strategies, it is
interesting to note whether this good transient response requires a greater control effort when
compared to other LQR techniques, as shown in Figure 12.
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Figure 12: 4-pole Magnetic Bearing control signal
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Immediately, one notices that the electric currents ix and iy (that is, the control signal)
necessary to stabilize the 4-pole AMB are approximately equal to 0.28 A. This represents
about 54% of the base current used (0.52 A). Another fact to be highlighted is that the three
curves (for each axis) are basically superimposed. Although the two-parameter decentralized
strategy has the shortest settling time, no additional control effort is required.

4 Conclusions

We have shown that the 4-pole Magnetic Bearing was the fastest (or equally fast) geometry,
followed by the eight, and finally the three-pole AMB. The two-parameter decentralized Lin-
ear Quadratic Regulator (LQRPD2p) is a viable alternative, as it presents a structure with
only two different parameters, with total decoupling between the variables. Besides that, two-
parameter decentralized LQR presented the shortest settling time among all strategies and the
lowest number of iterations in 77.8% of the cases, with the same control effort compared to
the other strategies. An increase in ω leads to a longer stabilization time (the exception is
the two-parameter decentralized strategy, in which there is a reduction in this settling time).
Furthermore, simulations with harmonic disturbances were made, and revealed that the change
in the control strategy does not impact these results – in all simulations, the 4-pole AMB was
the one with the best results. It should be mentioned that in these comparisons the 3-pole
AMB had an horizontal rotor while the other geometries used a vertical one. Further research
is needed for the case of all structures holding rotors in the same position, be it vertical and/or
horizontal.
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infinito,” Master’s thesis, COPPE/UFRJ, 2013.

[17] K. Ogata, Engenharia de Controle Moderno. Pearson, 2011.

[18] N. S. Nise, Engenharia de Sistemas de Controle. LTC, 2017.
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