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Abstract

Mechanical Bearings are machine elements that support the rotating axes and promote
smooth movement between contact surfaces. In order to eliminate friction between the
parts and, consequently, the need for lubrication, Active Magnetic Bearings (AMB) were
developed based on the generation of reluctance electromagnetic forces. Due to the un-
stable nature of this equipment, it is necessary to implement a control strategy to avoid
displacements and keep the axis aligned. There are studies about different geometries of
magnetic bearings regarding the number of poles they present. The eight and four-pole
configurations are the most usual, although other alternatives are being studied, like the
three and six-pole geometry. The main objective of this paper is to present a mathematical
model for the six-pole magnetic bearing applied to a vertical rotor system, propose control
strategies to stabilize the system and compare its performance to the four and eight-pole
bearings. In addition, comparisons between rotational speeds are carried out to define
low, medium and high rotational ranges, and a study on the system’s response to control
designed for a certain rotational speed in the system operating at different speeds.

1 Background
Bearings are mechanical transmission elements designed to support loads applied to a rotating
shaft, promoting movement between the contact surfaces by reducing friction between them.
They keep the axis aligned, preventing perpendicular displacements. Since the bearing is a
fixed component in contact with another that moves, the friction generated results in a loss of
efficiency in the transference of mechanical energy. In order to reduce this loss and increase
the operating life of the bearings, lubrication is necessary periodically. However, the use of
lubricating oils presents burdens such as time demands for maintenance, high costs, risks of
environmental contamination and restrictions on use in some industrial sectors [1].

Alternatively, with the objective of mitigating the disadvantages mentioned with the appli-
cation of conventional mechanical bearings, a new field of research has emerged and has become
increasingly prominent: Magnetic Bearings. Based on the generation of restoring forces capable
of preventing radial and axial movements of the rotating axis, its main characteristic is the ab-
sence of mechanical contact between the surfaces and, consequently, the elimination of friction
[2]. The restorative forces that govern the operation of Magnetic Bearings are obtained through
the injection of voltage or current in electromagnets strategically located radially to the axis.
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To determine these input variables and keep the axis aligned, it is necessary to apply a control
strategy, which leads to calling this devices Active Magnetic Bearings (AMBs).

There are some possible geometries for Magnetic Bearings in relation to the stator pole
number. Currently, the three best known geometries are the eight, four and three-pole. These
three geometries differ in heat dissipation, magnetic flux loss, interconnection of fluxes, and the
reluctance force equations, which leads to different models for each one [3].

The main objective of this work, following the research area of Magnetic Bearings, is to
develop and present a mathematical model for the six-pole magnetic bearing applied to a system
with a vertical rotor and propose control strategies to stabilize the system. Furthermore, a
comparative study between the six, four and eight-pole bearings performance is presented from
simulations. Two other studies are also carried out: comparisons between rotational speeds to
define low, medium and high rotational ranges, and the response to control laws designed for a
specific rotational speed in the system operating at different speeds.

2 Discussion
At present, there are two AMBs configurations that are better known and applied: the most
common and traditional, eight-pole configuration [4][5][6], and also the four-pole configuration
[7][8]. It can be said that these two cases have symmetry of 4, since the reluctance forces applied
to the rotor come from 4 points located on the canonical x (horizontal) and y (vertical) axes.

There are other possible topologies for AMBs, such as three [1][9], six and twelve-pole,
however, they are found less frequently. These geometries have symmetry of 3, where the
magnetic forces applied to the rotor come from 3 coplanar points, none of them in the canonical
x, y directions, in general; one of these points, at most, can lie in either the x or the y directions.

This paper adresses the development of the reluctance forces and modelling the dynamic
system in state space for the six-pole AMB which will be simulated in order to compare its
performance with the eight and four-pole configuration.

In the six-pole AMBs, there are three channels with two poles each, spatially separated by
(2π/3)rad angles. A basic illustration of this scheme is presented in Figure 1. The rotor shaft is
to be positioned at the origin of an x, y canonical coordinate system. This position is controlled
using the magnetic forces Fk(t) for k = 1, 2, 3, generated by electromagnetic principle from the
injection of currents in each pair of poles of the stator.

The main influence on the magnetic forces is the square of the magnetic flux φk(t) [7], as
shown in Equation 1:

Fk = φ2
k(t)

2µ0A
for k = 1, 2, 3, (1)

where µ0 is the magnetic permeability and A is the winding cross area through which the flux
passes.

The three fluxes φk are said to be decoupled, since each one of them does not intercept the
other two. All the flux injected in the rotor by one of the poles in channel k is absorbed by the
other pole in the same channel.

Considering dk(t) for k = 1, 2, 3 the gap width at pole k, Equation 1 can be rewritten so
that the magnitude of the reluctance force generated is [10]:

Fk = K

(
ik(t)
dk(t)

)2
with K = µ0An

2

4 for k = 1, 2, 3, (2)
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Figure 1: Six-pole configuration for Active Magnetic Bearings. Channel 1 is composed of the
pair of poles above and to the right, making an angle of (π/3)rad with the x axis.

where ik is the injected current and n is the number of coil windings. Therefore, the flux φk

depends only on the current ik and the distance dk.
The spatial directions of the three magnetic forces generated in the six-pole AMB, projected

in the x and y directions, lead to

F x(t) = F1(t) cos π6 − F2(t) cos π6 + F3(t) cos 3π
2 (3)

F y(t) = F1(t) sen π6 + F2(t) sen π6 + F3(t) sen 3π
2 . (4)

Applying Equation 2 into Equations 3 e 4, we obtain the resultant magnetic forces on the
rotor. Omitting (t) in the time-varying signals, the resultants are:

F x = K
√

3
2

[(
i1
d1

)2
−
(
i2
d2

)2
]

(5)

F y = K

2

[(
i1
d1

)2
+
(
i2
d2

)2
− 2

(
i3
d3

)2
]
. (6)

The rotor’s distances to the poles dk(t) can be denoted by Equation 7, where h is the nominal
gap width and ek measure the rotor’s displacement from the origin in the direction of pole k.

dk(t) = h− ek(t) for k = 1, 2, 3. (7)

It can be seen that the ek displacements are redundant to determine the rotor’s position in
the plane and only two values are sufficient for this purpose. Projecting the displacements on
the canonical directions x and y leads to:

e1(t) = x(t) cos π6 + y(t) sen π6 (8)

e2(t) = −x(t) cos π6 + y(t) sen π6 (9)

3
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e3(t) = x(t) cos 3π
2 + y(t) sen 3π

2 = −y(t). (10)

Applying equations 7, 8, 9 e 10 to the reluctance forces equations 5 and 6 and linearizing
around the operating point OP = (i01, i02, i03, x0, y0) = (0, 0, 0, 0, 0) leads to an uncontrollable
model. To solve this problem, it is possible to apply the base and differential currents concept:
ik(t) = i0 + vk(t) for k = 1, 2, 3, where i0 is a fixed base current and vk are differential currents.

At first, it is reasonable to consider a particular case where the 3 currents vk can be expressed
in terms of only 2 differential currents ix and iy:

i1(t) = i0 + ix(t) + iy(t) (11)

i2(t) = i0 − ix(t) + iy(t) (12)

i3(t) = i0 − iy(t). (13)

Combining Equations 5 to 13, we can obtain a complete mathematical model for the reluc-
tance forces generated in the 6-pole AMB. The linearization of this model around the operating
point O = (i0x, i0y, x0, y0) = (0, 0, 0, 0) results in:

F x(t) = kpx(t) + 2
√

3kvix(t) (14)

F y(t) = kpy(t) + 4kviy(t) (15)

kp = 3µ0An
2i20

4h3 and kv = µ0An
2i0

4h2 . (16)

The model presents decoupled structure, which is a desirable fact and will make the control
of 6 poles AMBs easier.To further understand how these magnetic forces interact with the x
and y displacements of the rotor, a dynamic mathematical model is necessary.

In the Magnetic Bearing, the stator is responsible for generating the magnetic forces while
all dynamic aspects depend on the shaft. For this work, it will be considered a rigid and
homogeneous rotor in the vertical position. Center of mass displacements can be determined
by the angles α and β. The dynamics of the shaft is described by

J p̈(t) +Gṗ(t) = E(t), (17)

where J is the inertia coefficient (or inertia matrix JI2), p =
[
β −α

]
is the position vector

based on the angular movements of the shaft, G is the gyroscopic matrix:

G =
[

0 ωIz

−ωIz 0

]
= ωIz

[
0 1
−1 0

]
, (18)

which depends on the rotation speed ω, and E is the external excitation vector. Three external
excitations are considered: magnetic, gravitational and supporting bearing [7].

From Equation 17, as can be seen in [7], it is possible to obtain the state space system
model, shown in equation 19 allowing the application of modern control techniques:

ẋ(t) = Ax(t) +Bv(t), (19)
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where A and B are, respectively, 4× 4 and 4× 3 matrices structured as follows:

A =
[

02 I2
A21 A22

]
B =

[
B1
B2

]
, (20)

in which

A21 = J−1b2kpI2 = A21(kp) A22 = −J−1(G+ Ca) = A22(ω) (21)

B1 = 02×3 B2 = J−1bdkvV = B2(kv), (22)

where I is an identity matrix, the other variables are constructive parameters of the prototype
and the state variables vector x is chosen to be

x =




xs

ys

ẋs

ẏs


 . (23)

Since the injected currents ik are the control variables of the system, the control vector v is
defined considering equations 11, 12 and 13

v(t) =



v1(t)
v2(t)
v3(t)


 =



ix(t) + iy(t)
−ix(t) + iy(t)
−iy(t)


 =




1 1
−1 1

0 −1



[
ix(t)
iy(t)

]
. (24)

Making the vector [ix(t) iy(t)]T = u(t), equation 19 can be rewritten into a structure with
only two control variables, the differential currents ix(t) and iy(t)

ẋ(t) = Ax(t) +Bdu(t), where Bd = bdkv

J




0 0
0 0

2
√

3 0
0 4


 . (25)

The output vector is formed by the signals measured by sensors xs(t) and ys(t).

z(t) =
[
xs(t)
ys(t)

]
=
[
1 0 0 0
0 1 0 0

]
ẋ(t) = Cẋ(t) (26)

In order to keep the shaft centralized, an active control strategy is needed to find an input
capable of stabilizing the system. This paper addresses the optimal control based on the
Linear Quadratic Regulator (LQR) theory, considering two types of schemes: centralized and
decentralized.

The block diagram in Figure 2 represents the closed-loop system achieved for the six-pole
AMB. In this case, the objective of the system is to reach the zero state to stabilize the rotor
at the center of the coordinate system.

As shown in the block diagram, the control signal is defined by u = Fx, since the reference
value r = 0. Therefore, the state equation can be rewritten as:

ẋ = Ax +BdFx (27)

where F is the feedback gain matrix, responsible for changing the system’s closed-loop poles,
once the system is controllable.
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Figure 2: Full state feedback block diagram.

The LQR method has the advantage of providing a systematic model for calculating the
gain matrix F [11]. The quadratic functional J expressed in equation 28 describes the index to
be minimized:

J =
∫ ∞

0
(xT (t)Qx(t) + uT (t)Ru(t)) dt (28)

where Q is a symmetric positive semidefinite matrix and R is a symmetric positive definite
matrix, which detemine the state error and the energy consumption, respectively.

Considering that this is a controllable system with all states observable and available, the
control law that minimizes J can be written:

u∗ = F ∗x. (29)

Matrix F ∗ is given by:

F ∗ = −R−1BT
d P, (30)

where P is the solution of an algebraic Riccati equation:

ATP + PA− PBR−1BT
d P +Q = 0. (31)

The optimal performance index of J is given by:

J = xT
0Px0, (32)

where x0 represents the initial state.
The LQR control technique just introduced is sometimes called centralized LQR (LQRc).

In this case, when performing state feedback, each component of the control vector u depends
on all state variables [10], as shown in Equation 33:

u = F ∗c x =⇒
[
u1
u2

]
=
[
f11 f12 f13 f14
f21 f22 f23 f24

]



xs

ys

ẋs

ẏs


 . (33)

Therefore, it is expected that the feedback matrix F ∗c to have all nonzero elements, but this
fact requires greater computational effort.
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To overcome this inconvenience, decentralized LQR (LQRd) control can be implemented.
The presence of null elements in the state feedback matrix prevents interactions between dif-
ferent states in the control application. These elements are located strategically so that the
system has a decoupled behavior, that is, each of the two control variables is independent of
the other, as shown in 34:

u1 = f11xs + f13ẋs and u2 = f22ys + f24ẏs. (34)

Thus, the decentralized feedback gain matrix F ∗d assumes the following structure:

[
u1
u2

]
=
[
f11 0 f13 0
0 f22 0 f24

]



xs

ys

ẋs

ẏs


 = F ∗d x. (35)

Since each control variable is only related to one state variable, the state space vector x can
be subdivided in two. Further details can be found in [10]. Thus, equation 35 can be rewritten
so that the structure of the decentralized proposal is:

u =
[
p1 0 d1 0
0 p2 0 d2

]
x = F ∗d x, (36)

where the notation used in the gain matrix refers to the PD (proportional-derivative) control
laws, since each control variable relates only to one output and its derivative.

Equations 37 to 39 present the necessary conditions for F to satisfy 36 and minimize the
performance index J = xT

0Pdx0, where X0 = x0x
T
0 is the matrix associated with the initial

conditions.

riFiCiXC
T
i +BT

i PdXC
T
i = 0 ∀i = 1, 2 (37)

A0X +XAT
0 +X0 = 0 (38)

AT
0 Pd + PdA0 +Q+

2∑

i=0
CT

i F
T
i riFiCi = 0 (39)

In [12] it was shown that such equations are necessary for the solution of the decentralized
problem and that they are interdependent conditions. Then, to determine the decentralized
feedback gain matrix F ∗d , it is necessary to use an algorithm. It can be said that the LQRd
case is simpler to implement than the LQRc due to the amount of null elements, however, the
characterization of the gain matrix is more laborious.

3 Results
To compare the performances of the 8, 4 and 6 pole Magnetic Bearing models, simulations were
performed submitting the systems to the control laws presented: centralized and decentralized
LQR, varying the rotation speed ω and the base current i0 to portray different operating
scenarios.

To find the matrices of the system’s dynamic model and the constants kp and kv, physical
parameters of the Magnetic Bearing prototypes are used [8], together with the base current i0.

7
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Figure 3: Centralized LQR response.

For the first set of simulations, the base current is considered i0 = 0.5 A. The operating
speeds ω used are 21 rad/s (approximately 200 rpm), 356 rad/s (approximately 3400 rpm) and
942 rad/s (approximately 9000 rpm). Figure 3 presents the LQRc response curves (xs and ys

displacements) for each speed and geometry:
It is observed that the 4-pole bearing is the fastest to return to the equilibrium point,

followed by the 8-pole and, lastly, the 6-pole bearing. The existing differences are small. It
can also be noticed that the settling time increases as the operating speed increases. This fact
suggests that lower operating speeds are better to stabilize the system. However, the variation
in settling times for the 3 speeds used is much smaller for the 4-pole geometry than for the
others.

Table 1: Closed loop eigenvalues - LQRc - ω = 356 rad/s - i0 = 0.5 A

Closed loop eigenvalues
8 polos 4 polos 6 polos

−191.9± 5.74i −285.7± 6i −167.7± 5.58i
−149.4± 4.47i −200.7± 4.22i −128.1± 4.26i

In Table 1, the closed loop eigenvalues of the 3 geometries submitted to the operating speed
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ω = 356 rad/s can be observed. The real part of the eigenvalues in the 4-pole bearing is greater
(in module) than the others, which confirms the shorter stabilization time indicated in the
graph.

A simulation with the same scenario is carried out for the decentralized LQR control strategy,
as shown in Figure 4:
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Figure 4: Decentralized LQR response.

The same characteristics found in the simulation of the LQRc control are observed, however,
when comparing the two control strategies, the LQRd presents a minimal decrease in the real
part of the eigenvalues, which generates a small increase in the stabilization time, as expected
in this technique. Table 2 presents the closed loop eigenvalues:

Table 2: Closed loop eigenvalues - LQRd - ω = 356 rad/s - i0 = 0.5A

Closed loop eigenvalues
8 polos 4 polos 6 polos

−190.2± 25.2i −283.5± 20.2i −168± 25.4i
−133.9 −187.2 −115.1
−165 −216.4 −140

It can be stated that among the 3 compared geometries, the 4-pole one presents the best
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performance, followed by the 8-pole and finally the 6-pole geometry. But still, the performances
are quite similar.

Comparisons on the behavior of the system for the three speeds used (21 rad/s, 356 rad/s
and 942 rad/s) were also carried out with the aim of analyzing whether such values can be
defined as low, medium or high speed, as these values were determined based on previous
works.

The procedure adopted was to compare the feedback matrices F and the closed-loop eigen-
values for the three rotation speeds ω. The centralized LQR feedback matrices for the 6-pole
bearing and base current i0 = 0.5 A are presented, respectively, in the equations 40 to 42:

F ∗6c (21 rad/s) =
[
−1168.9 −2.1 −8 0

2.4 −1012.3 0 −7

]
(40)

F ∗6c (356 rad/s) =
[
−1167.5 −35.3 −8 0

40.8 −1011.1 0 −7

]
(41)

F ∗6c (942 rad/s) =
[
−1159 −93 −8 0.1
107.4 −1003.7 0.1 −6.9

]
. (42)

The matrices have a similar structure. However, the elements f12 and f21 present a consid-
erable difference, which suggests an impact promoted by the change in operating speed values.
The eigenvalues for this situation are presented in table 3:

Table 3: Closed loop eigenvalues - LQRc - Six-pole MB - i0 = 0.5 A

Closed loop eigenvalues
21 rad/s 356 rad/s 942 rad/s
−166.27 −167.76± 5.58i −167.26± 15, 29i
−169.42 −128.10± 4.26i −127.56± 11.66i
−129.39
−126.98

The eigenvalues present real part with very similar values, however, as the operating speed
increases, the imaginary part also increases (in module), which generates a considerable impact
on the oscillation frequency of the system response.

Therefore, with the significant changes observed in some elements of the feedback matrices
and in the closed-loop eigenvalues of the system with the increase in the operating speed,
we can consider the values used in this work - 21 rad/s (approximately 200 rpm), 356 rad/s
(approximately 3400 rpm) and 942 rad/s (approximately 9000 rpm) - as low, medium and high
speeds, respectively.

Another interesting study to be carried out is to understand how an optimal control law
designed for a 6-pole magnetic bearing operating in a given angular speed range ω behaves
when applied to other values of rotational speed.

The comparison was made considering the base current i0 = 1.5 A and the centralized LQR
control strategy. The optimal control law designed for the six-pole bearing operating at low
speed, ω = 21 rad/s, was applied in the mathematical models of low, medium (ω = 356 rad/s)
and high (ω = 942 rad/s) speed. Figure 5 shows the response curves xs and ys for the three
mathematical models:

10
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Figure 5: Comparison on the control law for low rotation speed ω = 21 rad/s.

As can be seen, the three models behave well when subjected to a low speed control law,
with no large discrepancy between the response curves. It can be said then that the system
responds satisfactorily and very similarly when it operates at a rotation speed different from
which the control law was designed.

4 Conclusions
The linear dynamic model of the 6-pole magnetic bearing was developed and shown in state
space structure, presenting the decoupling characteristic between the control variables. Simu-
lations to compare the three geometries were performed for two control strategies (centralized
LQR and decentralized LQR) varying the values of the rotation speed ω.

It is concluded that the increase in rotation speed implies a small increase in the stabilization
time necessary for the bearing to return to the central position. As for the results of the six-pole
geometry presented, it was found that it had a slightly slower response time than the eight-
and four-pole bearings.

In addition to comparing the existing geometries, a comparison was made between the
rotation speeds used in this work and it was possible to define three operating speed ranges:
low, medium and high. It was also studied the behavior of the system when applying a control
law designed for a given rotation speed in the system operating at different speed, from which
it was concluded that the system responds satisfactorily.
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