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Abstract

The control loop of active magnetic bearings requires feedback of the rotor position to
enable a stable levitation of the rotor. In contrast to conventional position sensor-based
systems, self-sensing control can lead to a far more simple design of the system. The fo-
cus of this study lies on a high dynamic control of a self-sensing three-phase radial active
magnetic bearing. The self-sensing operation is based on the detection of coil inductance
deviations of an eccentrically levitating rotor. The inductance of the actuator coils is ob-
tained by current slope measurements in the phases of the bearing. For this reason, special
voltage pulse patterns are applied to the coils, which are defined by the half-bridges of a
three-phase inverter. The required voltage pulse patterns are defined by a space vector
modulation in a digital signal processor. In this work, a variant of space vector modulation
is presented, which allows a high dynamic of the current controller under consideration of
self-sensing aspects. Finally, the designed modulation strategy was investigated with sim-
ulations and measurements on a prototype of a radial active magnetic bearing.

1 Introduction

Active magnetic bearings (AMBs) enable a stable levitation of a rotor without mechanical
contact. Therefore, high rotor speeds can be reached without the need of lubricants. For a
stable levitation of the rotor, a position information of the rotor is required to close the control
loop. Conventional AMB systems use position sensors to determine the rotor position. Design
criteria of active magnetic bearings often include requirements like system costs, construction
space and the reliability of the system. Self-sensing methods can help to achieve the design goals
by a reduction of the number of sensors in a system. The self-sensing control of active magnetic
bearings is a field of research for many years [1]. Therefore, various control approaches have been
established, which can be divided in observer-based and high frequency perturbation methods
[2]. Observer-based methods rely on a design of an estimator for the air gap length by voltage
and current measurements. Therefore, a detailed mathematical description of the system is
required to achieve adequate estimator results as shown in [3]. High frequency perturbation
methods rely on an estimation of the air gap length by the inductance of the actor. In many
AMB configurations, the air gap length influences the inductance of the actuator coils. Hence,
inductance changes can be detected by the current response of high frequency (HF) voltage
pulses. Previous studies in this field used switching amplifiers with hysteresis [4], [5], HF
voltage injection [6], [7] or an analysis of the current ripple by the pulse width modulation
(PWM) in time or frequency domain [8]–[13].
In this study, a modified version of the so-called INFORM (Indirect Flux detection by Online
Reluctance Measurement) method is used for the detection of the rotor position. The method
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was originally designed for the rotor angle estimation of permanent magnet synchronous motors
[14]. In previous studies, the INFORM method was adapted to three-phase active magnetic
bearings, enabling a self-sensing control of the rotor position [15], [16]. The method is based on
current slope measurements to detect inductance deviations of an eccentrically levitating rotor.
Therefore, special voltage pulse patterns are applied to the actuator coils by the switches of
a three-phase inverter. The voltage pulse patterns are defined by a space vector modulation,
which is an essential element of the proposed self-sensing control method. On the one hand,
the space vector modulation has to provide the desired output voltage for the control of the
coil currents. On the other hand, the space vector modulation must ensure the possibility of
current slope measurements by the fulfillment of timing requirements of the pulse pattern.
The following article deals with the design of a space vector modulation, which enables a high
bandwidth of the current controller as well as a suitability for self-sensing control. In previous
work, control current deviations were observed by a switchover of the space vector modulation
strategy, which may lead to limitations in high precision control [17]. For that reason, special
attention is paid to a precise control of the coil currents. In the following, the self-sensing
principle is briefly outlined and requirements as well as limitations of space vector modulation
(SVM) are discussed. Considering the design rules, a novel variant of SVM is introduced
and implemented in a digital signal processor (DSP). Measurements on a prototype show the
achievable current controller performance compared to a previous SVM strategy.

2 Self-Sensing Principle

The self-sensing principle is briefly outlined to introduce the requirements of self-sensing space
vector modulation. The bearing configuration of Fig. 1 shows a three-phase radial AMB with six
poles. The bias flux of the homopolar design is realized by permanent magnets. For the use of
a conventional three-phase inverter, the coils are connected in a double wye configuration. The
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Figure 1: Structural design of the six pole radial homopolar AMB with a cross-section of the
shaft. The bias flux (indicated by blue lines) is generated by permanent magnets (PM).

detection of the rotor position is based on the evaluation of the position dependent inductance
of the actuator coils. Therefore, voltage pulses are applied to the coils, which are defined by
the half bridges of a three-phase inverter. In simplification, the inductance can be determined
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by a measurement of the current slope dI/dt due to a defined voltage pulse.

U ≈ L ⋅ dI

dt
→ L ≈ U ⋅ (dI

dt
)
−1

(1)

Concerning the rotor position detection, the inductance variation of opposing coils plays an
important role. For this reason, an approach with a differential evaluation of opposing coil
currents was chosen to cancel out inductance offsets. The determination of the inductance
variation is based on a differential current slope measurement of the actuator coils. In this con-
figuration, the differential current slope is measured by a transformer with an open-circuited
sense winding as shown in Fig. 2. The transformer builds the connection between two opposing

IU+
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IU IV
IW

∝ d∆IU
dt

UDC

Figure 2: Illustration of the three-phase differential current slope measurement.

coils of the bearing and a phase of the inverter. Therefore, the differential design of the trans-
former enables the measurement of the differential current slope d∆I/dt with ∆I = I+ − I− [18].
Thus, the rotor position can be calculated with the d∆I/dt information under the consideration
of the reluctance model of the three-phase magnetic circuit [16]. Concerning the settling time
of the transformer, a minimal pulse width of the applied voltage pulses is required to allow a
stable measurement of the current slope d∆I/dt. Figure 3 shows an exemplary waveform of
the differential current ∆IU and the output voltage of the transformer, which is proportional
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Figure 3: Current slope detection: The output voltage of the transformer Ud∆IU /dt is propor-
tional to the differential current slope of the AMB phase U. (fPWM = 20kHz)

to the derivative of the signal. It can be seen that the output voltage is nearly constant after
the settling time of the transformer. Thus, it can be concluded that the presented procedure
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requires a minimum voltage pulse width to enable a proper determination of the current slope
information, which must be guaranteed by the space vector modulation.

3 Space Vector Modulation

The three-phase design of the AMB enables the usage of a space vector modulation, which
is responsible for applying the respective control voltage to the AMB coils. Figure 4 shows
an overview of the interaction between current controller, space vector modulation and the
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Figure 4: Structural overview of the current control loop: The SVM defines the duty cycles of
the half-bridges correspondingly to the desired phase voltages of the current controller. The
current feedback is realized by a measurement of the DC-Link current IDC−Link.

half-bridges of the inverter. For achieving the force requirements of a superimposed position
controller, the respective control currents (Ix,des, Iy,des) must be regulated in the AMB coils.
Therefore, the current controller demands the desired coil voltages (Ux,des, Uy,des), which are
the inputs of the SVM.

P = [Ux,des
Uy,des

] (2)

The SVM calculates the duty cycles δU , δV , δW correspondingly to the desired coil voltage space
vector P , whereby the timing of the switches of the three half-bridges is defined. The topology
of the three-phase inverter enables the definition of eight fundamental voltage space vectors
by the switches of the half-bridges as shown in Table 1. If the voltage transition during the

Table 1: Voltage space vector definition of a three-phase inverter

Phase Switch Voltage space vector
U+ U− V+ V− W+ W− Z+ Z−

U HS 1 0 0 1 0 1 1 0
U LS 0 1 1 0 1 0 0 1
V HS 0 1 1 0 0 1 1 0
V LS 1 0 0 1 1 0 0 1
W HS 0 1 0 1 1 0 1 0
W LS 1 0 1 0 0 1 0 1

HS = High-Side switch, LS = Low-Side switch; 1 = closed, 0 = open
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switching action is neglected, the voltage pulses have only discrete amplitudes in time domain.
However, the mean value over a PWM period correlates with the desired voltage space vector
P , which can be assembled by a linear combination of the fundamental voltage space vectors
U+, U−, V+, V−, W+, W− and the zero space vectors Z+, Z−.

P = cU+U+ + cV+V+ + cW+W+ + cZ+Z+ +
cU−U− + cV−V− + cW−W− + cZ−Z− (3)

The coefficients cU+ , cU− , cV+ , cV− , cW+ , cW− , cZ+ , cZ− define the amplitude of the corresponding
fundamental space vectors. In this context, the amplitude of a voltage space vector is equal to
the duration of the voltage pulse in the PWM pattern. The choice of the coefficients provides
a degree of freedom, which can be used for the fulfillment of the following criteria.

3.1 Design Objectives

1. For achieving a high bandwidth of the current controller, a high maximum modulation
amplitude ∥P ∥2 is desired. Furthermore, it is advantageous if the achievable modulation
amplitude is independent of the angle of the voltage space vector, allowing the same
dynamic in all space directions.

2. For self-sensing control a minimum pulse width tdI/dt is required, to allow a current slope
measurement as depicted in Fig. 3. For reasons of symmetry, at least one fundamental
voltage space vector of each phase shall obtain the minimum pulse width tdI/dt.

3. The waveform of the current ripple is affected by the timing sequence of the voltages
pulse pattern. Abrupt transitions between modulation patterns can lead to transient
deviations in the control current [17]. For enabling a precise current control, the timing
sequence must not change for infinitesimal changes of the desired voltage space vector P .
Therefore, the SVM should be designed in a way that the coefficients of (3) are determined
by a continuous function of P .

3.2 Design Procedure

The main question of the design of the SVM is the determination of the coefficients from (3),
while taking the described design objectives into account. For the following considerations, the
convention of Fig. 5 is used for the definition of the angles ϕ and Φ. The angle ϕ is defined
between the space vector U+ and the desired voltage space vector P . Moreover, the sector angle
Φ is defined as

Φ = π
6

⌊ϕπ
6

⌋
±

∈{0,1,...,11}

, 0 ≤ ϕ < 2π (4)

with the floor function ⌊⌋. Dividing the set of sector angles into even and odd sectors

Φeven = {2k
π

6
∣ k = 0..5} (5)

Φodd = {(2k + 1) π
6
∣ k = 0..5} (6)
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Figure 5: Illustration of the fundamental voltage space vectors and the angles ϕ, Φ for a desired
voltage space vector P .

enables the definition of the coordinate transformation

P = [cos (−ϑ) −sin (−ϑ)
sin (−ϑ) cos (−ϑ)] ⋅P (7)

with

ϑ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Φ for Φ ∈ Φeven

2ϕ −Φ − π
6

for Φ ∈ Φodd .
(8)

Equation (7) transforms the space vector P in a generic coordinate system and has the property
that the space vector P can always be transformed to the gray section of Fig. 6. Thus, the
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Figure 6: The voltage space vector P represents P in a generic coordinate system after the
coordinate transformation (7).

resulting space vector P can be represented by a linear combination of the generic space vectors
S1, . . . ,S6. The correlation of the generic space vectors to the fundamental space vectors will
be discussed later on. The generic coordinate system enables a simplification of the problem (3),
because the whole modulation range can be reduced to the gray area of Fig. 6. After solving
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the problem in the generic coordinate system, the solution can be transformed back to the
respective sector, which is given by Φ. For further considerations, the angle ζ

ζ = ϕ − ϑ, ζ ∈ [0, π
6
] (9)

is defined as the angle between the space vector S1 and P (Fig. 6) and is normalized to an
angle of π/6

ζ̂ = 6

π
ζ (10)

for reasons of simplicity. For solving the problem, the coefficients of the space vectors S1, . . . ,S6

must be determined with regard to the design objectives. In order to achieve a continuous
behavior of the voltage pulse pattern, special attention is paid to a sector switchover due to a
change of the sector angle Φ. Thus, the following boundaries of the modulation range in Fig. 6
must be considered:

B1 = {P ∣ ∥P ∥
2
> 0, ζ̂ = 1} (11)

B2 = {P ∣ ∥P ∥
2
> 0, ζ̂ = 0} (12)

B3 = {P ∣ ∥P ∥
2
= 0, ζ̂ ∈ [0,1]} (13)

The boundary B1 (B2) represents a switchover from sector I to sector II (XII), while the
boundary B3 enables a switchover to an arbitrary sector by a transmission via the origin of the
coordinate system. Equation (14) shows the designed modulation strategy for the representation
of a space vector P , which is composed as follows:

P = a1S1 + a2S2 + (tmin + (tdI/dt − tmin) ζ̂)S3 +
tminS4 + tminS5 + tdI/dtS6 (14)

In principle, the space vector P could be represented just by the space vectors S1 and S2.
To enable a current slope measurement in each phase within one PWM period, at least one
coefficient of each phase must obtain a minimum amplitude of tdI/dt. Hence, the space vectors
S1, S2 and S6 are chosen for the current slope measurement, because the linear combination of
the vectors already shows in a similar direction to P , meeting the demand of a high modulation
amplitude. Consequently, the space vectors S1, S2 and S6 are desired with an amplitude of at
least tdI/dt.
In the first step, the coefficient of S6 is set to tdI/dt and it is assumed that the coefficients a1
and a2 obtain an amplitude greater than tdI/dt. The validity of this assumption will be proven
later on. The coefficients of non-required space vectors (S4, S5) are set to tmin to ensure a
minimum pulse width. The minimum pulse width tmin avoids very short voltage pulses, which
may cause problems for semiconductor switches. Concerning a transition between sectors, the
space vector S3 plays an important role for a jerk-free sector switchover. An evaluation of (14)
at the boundary B1 indicates

PB1 = a1S1 + a2S2 + tmin (S4 +S5) + tdI/dt (S3 +S6) (15)

that pairs of space vectors {S1,S2}, {S4,S5}, {S3,S6} have the same coefficients (a1 = a2 by
constraint of boundary). Due to the symmetric arrangement of the coefficients, a continuous
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switchover from sector I to sector II is possible by swapping the generic space vectors of the
pairs (S1 → S2, S2 → S1, . . . ). Concerning the boundary B2,

PB2 = a1S1 + a2S2 + tmin (S3 +S4 +S5) + tdI/dtS6 (16)

the pairs of space vectors {S2,S6} and {S3,S5} have the same coefficients (a2 = tdI/dt by
constraint of boundary). Therefore, also in this case, a continuous switchover from sector I to
sector XII is possible by swapping the generic space vectors of the outlined space vector pairs.
The relevance of the boundary B3 will be shown after solving (14). The coefficients a1 and a2
can be directly calculated by converting (14) to the following form:

[a1
a2

] = [S1 S2]
−1 ⋅ (P − (tmin + (tdI/dt − tmin) ζ̂)S3 − tminS4 − tminS5 − tdI/dtS6) (17)

Thus, the space vector P can be represented by (18)

P = c̄1S1 + c̄2S2 + c̄3S3 + c̄4S4 + c̄5S5 + c̄6S6 (18)

with the coefficient vector
c̄ = [c̄1 c̄2 c̄3 c̄4 c̄5 c̄6]T . (19)

The coefficients of (19) must fulfill the constraint that the sum

6

∑
i=1

c̄i = 1 (20)

is equal to 1. This constraint procures that the whole PWM period is filled by the voltage space
vectors, which is a consequence of a constant PWM switching frequency. For that reason, the
remaining time

trem = 1 − (a1 + a2 + tdI/dt + 3 tmin + (tdI/dt − tmin) ζ̂) (21)

is distributed equally among all generic voltage space vectors, to allow a maximum measure-
ment window for d∆I/dt measurements. Thus, the coefficients of c̄ are given by a coefficient
comparison between (14) and (18),

c̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
a2

tmin + (tdI/dt − tmin) ζ̂
tmin
tmin
tdI/dt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ trem
6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

with an extension by the value of trem/6. The additional amplitude of trem/6 does not influence
the representation of P because it is equally distributed to all space directions, which results in
a composed zero space vector. Figure 7 shows the admissible modulation area, which is located
inside the red boundaries. The minimum and maximum symmetrical modulation amplitude
(Rmin, Rmax) define the symmetrical modulation area, which is indicated by the gray area.
The limitation of the admissible modulation area to the symmetrical modulation area provokes
that the current controller obtains the same dynamic in all space directions. It can be seen that
the symmetrical modulation area does not include the origin of the modulation area for the
chosen parameters tdI/dt = 0.14 and tmin = 0.02 (parameters are normalized to PWM period).
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Figure 7: SVM by Equ. (14): Illustration of the possible symmetrical modulation range (gray
area) with the minimum and maximum modulation boundaries (red). (tdI/dt = 0.14, tmin = 0.02)
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Figure 8: Comparison of the symmetrical modulation amplitude for the designed space vector
modulation.

Figure 8 shows the symmetrical modulation amplitudes as a function of tdI/dt for fixed values of
tmin. It can be seen that the maximum symmetrical modulation amplitude Rmax decreases with
a higher value of tdI/dt. At a certain value of tdI/dt, also a minimum symmetrical modulation

amplitude Rmin occurs, which is an issue for small amplitudes of P .
For that reason, the calculation approach of (14) is extended for dealing with small modulation
amplitudes. Equation (23) shows an alternative set of coefficients for the representation of P

ĉ = 1

6
⋅ T 6×1 + 1

3
[S1 S2 S3 S4 S5 S6]T ⋅P (23)

with a 6 × 1 matrix T 6×1 with all entries chosen as 1. The calculation (23) has the property
that each coefficient has an offset of 1/6, which is superposed by the inner product P and the
corresponding space vector S. Thus, all coefficients have the amplitude of 1/6 if the amplitude
of P is zero (∥P ∥

2
= 0). This characteristic is appropriate for a continuous sector switchover at

the boundary B3 (13), because with an equal amplitude the mapping between the coefficients
(23) and the fundamental space vectors can be done in any order (Equ. (23) also fulfills the
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boundaries B1 and B2). For the design of a SVM without restrictions for small modulation
amplitudes as shown in Fig. 8, the coefficients of (19) and (23) are combined

c = α c̄ + (1 − α) ĉ (24)

by a weighting factor α. The weighting factor α

α = ∥P ∥2
Rmax

(25)

is amplitude dependent by ∥P ∥2 and normalized to Rmax. Therefore, the SVM of (23) is
dominant for low amplitudes and the modulation strategy (19) is dominant for large amplitudes
of ∥P ∥2. Regarding the transition between two modulation strategies, it must be checked that all
coefficients obtain at least an amplitude of tmin within the modulation range. Furthermore, at
least one coefficient of each phase direction must allow a d∆I/dt measurement by an amplitude
of at least tdI/dt. This circumstance was proven with a numerical simulation over the whole

admissible modulation area. With the coefficients of (24), the desired voltage space vector P
can be composed as

P = c1S1 + c2S2 + c3S3 + c4S4 + c5S5 + c6S6. (26)

This kind of SVM will be stated as 6-Active HMR SVM (High Modulation Range) in the
following considerations. The term “6-Active” refers to the number of active space vectors
within a PWM period. Figure 9 shows the possible modulation range for the 6-Active HMR
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Figure 9: 6-Active HMR SVM: Illustration of the possible symmetrical modulation range (gray
area) with the corresponding maximum modulation boundary (red). The origin of the coordi-
nate system is included in the admissible modulation range. (tdI/dt = 0.14, tmin = 0.02)

SVM. In contrast to Fig. 7, the admissible modulation range also includes the origin of the
coordinate system. Considering the possible modulation range, Fig. 10 depicts the maximum
symmetrical modulation range as a function of tdI/dt for the modulation strategy (26).
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Figure 10: Comparison of the symmetrical modulation amplitude for the 6-Active HMR SVM.

In contrast to Fig. 8, the 6-Active HMR SVM has the advantage of Rmin = 0 in the admissible
range of tdI/dt. For reasons of comparison, the characteristic of the 3-Active SVM is also shown,
which was used in previous studies for self-sensing control [16]. Concerning the modulation
amplitude, the 6-Active HMR SVM enables a significant higher value of Rmax compared to the
3-Active SVM, which allows a higher dynamic in current control.
Equation (26) shows the coefficients of the SVM in the generic coordinate system, which was
introduced with the coordinate transformation (7). However, the coefficients of the fundamental
space vectors U+, U−, V+, V−, W+, W− have to be determined for an implementation of the SVM
in a DSP. The coefficients of (3) are determined by a back transformation of the generic space
vector coefficients. Therefore, the coefficients of the fundamental space vectors cU+ , cU− , cV+ ,

Table 2: Coefficient Mapping
Coeff. Sector angle Φ

0π
6

1π
6

2π
6

3π
6

4π
6

5π
6

6π
6

7π
6

8π
6

9π
6

10π
6

11π
6

cU+ c1 c2 c6 c3 c5 c4 c4 c5 c3 c6 c2 c1
cW− c2 c1 c1 c2 c6 c3 c5 c4 c4 c5 c3 c6
cV+ c3 c6 c2 c1 c1 c2 c6 c3 c5 c4 c4 c5
cU− c4 c5 c3 c6 c2 c1 c1 c2 c6 c3 c5 c4
cW+ c5 c4 c4 c5 c3 c6 c2 c1 c1 c2 c6 c3
cV− c6 c3 c5 c4 c4 c5 c3 c6 c2 c1 c1 c2
cZ+ 0 0 0 0 0 0 0 0 0 0 0 0
cZ− 0 0 0 0 0 0 0 0 0 0 0 0

cV− , cW+ , cW− , cZ+ , cZ− are determined by a sector angle dependent mapping of the coefficients
of (26) by means of Table 2. Regarding self-sensing, at least three current slope measurements
are desired within one PWM period. Figure 11 shows the number of achievable current slope
measurements within one PWM period for different modulation regions. It can be seen that
the inner regions of the modulation area allow more than three current slope measurements.
The additional information could be used for increasing the quality of the self-sensing position
signal.
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Figure 11: 6-Active HMR SVM: Visualization of the number of possible d∆I/dt measurements
for different modulation regions. (tdI/dt = 0.14, tmin = 0.02)

4 Measurements and Results

The following section contains measurement results of the introduced space vector modulation
strategy. Therefore, the SVM was implemented on a three-phase inverter with a TMS320F28335
digital signal processor from Texas Instruments. The current controller is based on the control
structure as shown in Fig. 4. In this configuration, only the DC-Link current was measured
and the phase currents (IU , IV , IW ) were calculated and transformed in a Cartesian coordinate
system (Ix, Iy) by the Clarke transformation. The control law of the control currents Ix, Iy was
based on non-coupled proportional integral (PI) controllers. In the following, all measurements
were performed on a radial homopolar AMB as shown in Fig. 1. The six-pole AMB was driven
by a three-phase inverter with a DC-Link voltage of UDC = 18V . The parameters of the SVM
were chosen as fPWM = 20kHz, tdI/dt = 0.14 and tmin = 0.02. This configuration avoids voltage
pulses shorter than 1µs and provides at least 7µs duration for current slope measurements.
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Figure 12: (a) Measured step response of the current controller for different modulation strate-
gies. (b) Corresponding amplitude of the desired voltage space vector P .
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Figure 13: Modulation pattern of the 6-Active HMR SVM: Illustration of the phase voltages
and currents for a step in the amplitude of P from zero to Rmax (ϕ = 0).

Figure 13 shows the operation of the designed SVM in time domain with the respective phase
voltages and currents. The desired voltage space vector P was chosen as a step from zero to the
maximal symmetrical amplitude Rmax in direction of U+ (ϕ = 0). The phase voltages UU , UV
and UW depict the timing of the voltage pulse pattern corresponding to P . It can be seen that
always six space vectors are active within one PWM period. In case of ∣∣P ∣∣2 = 0, all space vectors
obtain the same amplitude, which results in zero mean value of the phase voltages in contrast
to the case of ∣∣P ∣∣2 = Rmax. The bottom plot shows a comparison between a simulation and a
measurement on the AMB prototype for the phase U . Although measurement and simulation
show good consistency, a remaining deviation can be seen because of parameter uncertainties
and non-linear AMB material effects. Regarding self-sensing operation, the SVM enables at
least one d∆I/dt measurement per phase in each PWM period (Fig. 3), which can be used for
self-sensing position detection.

An adequate bandwidth of the current controller is important to follow the requirements
of superimposed force and position controllers. Figure 12 shows a measurement of the current
controller step response for different SVMs. The 3-Active SVM has already been investigated
in previous work [16] and is therefore used as reference. It can be seen that the 6-Active
HMR SVM achieves a fast current response without overshoot. A comparison of the maximum
space vector amplitude ∥P ∥

2
indicates that the 6-Active HMR modulation has about 90% more

modulation amplitude than the 3-Active SVM for the chosen parameters tdI/dt and tmin. A
bigger modulation amplitude can be used to increase the dynamic of the current controller or
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to reduce the DC-link voltage in order to minimize power losses in the AMB without losing
control bandwidth.

-400 -200 0 200 400

-400

-200

0

200

400

x-position in µm

y
-p

o
si

ti
o
n

in
µ
m

Sensor

Self-Sensing

Figure 14: Comparison of the self-sensing and sensor position for different rotor setpoints.

Concerning self-sensing position control, the AMB was operated with a position estimator,
which uses the d∆I/dt information obtained by the 6-Active HMR SVM. Figure 14 shows a
comparison of the self-sensing and sensor position of a levitating rotor, whereby the AMB
prototype has an air gap of 800µm. The steady-state error between the sensor and self-sensing
method shows an overall low error with slight amplitude and angle deviations in the outer
regions.

5 Conclusions

The focus of this study lied on the design of a space vector modulation for a three-phase
self-sensing radial magnetic bearing. In contrast to conventional SVM methods, the design
of the SVM in this study underlies additional restrictions to allow a self-sensing operation of
the magnetic bearing. Special attention was paid to the modulation amplitude for achieving
a high dynamic of a superimposed current controller. Furthermore, considerations concerning
precise current control were taken into account. This work contains the principles of self-sensing
space vector modulation with a detailed description of a novel self-sensing SVM strategy. The
designed SVM strategy was implemented and verified on a three-phase inverter in combination
with a prototype of a self-sensing magnetic bearing. Measurements on the prototype showed
that the dynamic of the current controller could be increased compared to a previous modulation
strategy. Finally, a measurement with different setpoints of a levitating rotor showed the steady-
state performance of the self-sensing control compared to an external sensor. Further analysis
on the quality of the self-sensing position detection, especially under dynamic conditions, will
be part of future investigations.
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