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Abstract

Bearingless permanent magnet (PM) synchronous machines, used as high-speed drives,
typically employ a simple rotor structure. Machines of smaller size are equipped with
a solid shaft on which a permanent magnet ring is mounted, protected by a carbon-fiber
sleeve. Larger machines often require an additional rotor sheet package and use permanent
magnet shells instead of a ring.
Since the permanent magnet exhibits a small yield strength, no shrink-fitting between the
magnet ring and the shaft can be applied. Thus, the PM ring is required to be slightly
bigger in inner diameter than the shaft in outer diameter, leading to a half-moon shaped
air gap between magnet and shaft. Although this air gap is usually in the µm-range
it can lead to a considerable rotational-frequent radial disturbing force. We discuss the
influences, such as the rotor diameter and the pole count, which contribute to this magnetic
eccentricity problem. We also show the disturbing influence on the rotor position control
by measurements on a built prototype.

1 Introduction

Bearingless Motors (BM) have gained rising attractiveness in the past decade [3]. The most
promising topology for industrial high-speed applications such as pumps or compressors is the
bearingless permanent magnet (PM) synchronous machine. Several prototypes of this topology
have reached high speed values up to 100 000 min−1 [4] and 60 kW [5].
One of the key properties that makes PM machines suitable for high-speed operation is the
simple composition of the rotor. Typically, it is composed of a massive magnetic steel shaft on
which a solid PM ring of low pole count is glued. For bigger diameters, often PM shells are
used. The permanent magnet is retained by a protecting carbon- or glas-fiber bandage (Fig. 1c).
The bandage is mounted onto the PM by shrink-fitting. Such a shrink-fitting is possible, since
the PM exhibits a very high compressive ultimate strength (Table 1). The chosen undersize

Table 1: PM material properties, used for the prototype machine [1, 2]

Sm2Co17 NdFeB

Remanence flux density (100 ◦C) Brem / T 0.96 1.13

Relative permeability µr,PM 1.056 1.068

Compressive ultimate strength Rm,comp / N ·mm−2 650 925

Tensile ultimate strength Rm / N ·mm−2 95 90

Density ρ / kg ·m−3 8300 7650

Undesired eccentricity air gap δecc / µm 50 180
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Table 2: Dimensions of the prototype machine

Axial active length lFe / mm 40

Stator outer / inner radius rs,o/ rs,i / mm 37.5 / 17.5

Shaft radius rsh / mm 12.25

PM height hPM / mm 2.75

Bandage height + mechanical air gap width: δ / mm 2.5
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Figure 1: Built 1 kW / 60000 min−1 bearingless PM synchronous machine and simplified 2D
finite element model

between bandage and PM must be chosen to avoid a loss of contact between PM and shaft
at high-speed and to stay below the bandage material’s yield strength [6]. The choice of this
shrink-fitting is by far the most crucial part of the rotor assembly. Thus, little attention is
paid to the mounting of the permanent magnet onto the steel shaft. However, this mounting
(Fig. 1a) is also problematic, since the PM only exhibits a very low tensile ultimate strength Rm

(Table 1). Therefore, the PM must be mounted onto the shaft without any undersize, so that
a small single-sided air gap δecc (Fig. 2) between PM and shaft can occur, which is rotor-fixed.
This single-sided air gap leads to a flux concentration at the opposite side of the maximum
eccentricity air gap width δecc (Fig.2b), resulting in a modulation of the fundamental air gap
field (Fig. 2c).
This paper shows that even very small values δecc < 200 µm (here: < 1.6 % of the shaft radius
rsh, Table 2) lead to a considerable, disturbing radial force Fecc on the rotor. We discuss, how
this magnetic eccentricity influences the operation of bearingless machines. The investigations
are carried out for two rotors, one with a Sm2Co17 PM and one with a NdFeB PM, at a built
prototype with 1 kW at a speed of n = 60 000 min−1. The two PM rings differ in remanence
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(c) Simulated radial component of the air gap flux density Br with and without eccentricity

Figure 2: Visualization of the magnetic eccentricity, exemplary with an non-realistically big
eccentricity air gap width δecc = 1.5 mm

flux density (Table 1). They also exhibit a different eccentricity air gaps δecc which occurred
unintentionally. We additionally show, how the eccentricity force is influenced by the machine’s
size, pole count and PM height.

2 Forces due to Magnetic Eccentricity

To calculate the forces on the rotor, the Maxwell stress tensor (2) is evaluated over a cylindrical
surface of length lFe and radius rδ = rs,i − δ/2 (1). lFe is the machine’s axial iron length, rs,i
the bore radius and δ the sum of the air gap width and the bandage height (Table 2). The
radial and tangential air gap field components Br and Bγ are given as the sum of the rotor and
stator field waves.(

Fx (t)
Fy (t)

)
=

lFe∫
0

2π∫
0

(
fr (γ, t) · cos (γ)− fγ (γ, t) · sin (γ)
fr (γ, t) · sin (γ) + fγ (γ, t) · cos (γ)

)
· dγdz (1)

(
fr (γ, t)
fγ (γ, t)

) ∣∣∣∣
r=rδ

=
1

2 · µ0
·
(

B2
r (rδ, γ, t)−B2

γ (rδ, γ, t)
2 ·Br (rδ, γ, t) ·Bγ (rδ, γ, t)

)
(2)
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Usually in high-speed bearingless machines the radial component of the rotor air gap field
amplitude B̂R,p,p,r with pole count 2p is much bigger than the stator field. In the considered
bearingless machine prototype the rotor air gap field is about 15 times higher than the stator
field. Therefore, it is neglected in the analysis. Eccentricity problems can be analytically
calculated by using the so-called bi-linear conformal mapping method [7]. Alternatively, the
perturbation method according to [8, 9] can be used. Here, a magnetostatic 2-dimensional
finite element method simulation with magnetically linear and isotropic material assumption
is used instead, based on the JMAG Designer 19.1. In this section, only the occurrence of the
eccentricity-originated additional air gap field waves Becc,µ,k,r is explained qualitatively, which
lead to the eccentricity force Fecc.
The radial (subscript: r) rotor (subscript: R) flux density wave BR,µ,k,r (rδ, γ, t) in the air
gap of a PM machine at r = rδ is approximately given by (3) if a 1-dimensional air gap field
is assumed. γ is the mechanical circumference angle in stator-fixed-coordinates, k is the time
harmonic order, which is always k = p for the fundamental field wave in stator-fixed coordinates.
µ is the absolute space harmonic order, which is always µ = p for the fundamental field wave.
c is the ratio of the PM height hPM to the air gap width δ.

BR,µ,k,r (rδ, γ, t) = −hPM

δ
·BPM,µ,k,r (rδ, γ, t) = c (γ, t) ·BPM,µ,k,r (rδ, γ, t) (3)

The single-sided air gap δecc (Fig. 2) leads to a PM height hPM (γ, t) and air gap width δ (γ, t),
which vary with the circumference angle γ and time t in stator-fixed coordinates (4), (5). Thus,
the radio c (γ, t) also varies (6), which can be approximated by (7).

hPM (γ, t) ≈ hPM −
δecc
2

+
δecc
2
· cos (γ − 2π · n · t+ ϕecc) (4)

δ (γ, t) ≈ δ +
δecc
2
− δecc

2
· cos (γ − 2π · n · t+ ϕecc) (5)

c (γ, t) = −hPM (γ, t)

δ (γ, t)
= c0 +

∞∑
i=1

ĉi · cos (i · γ − i · 2π · n · t+ ϕecc) (6)

≈ −
hPM − δecc

2

δ + δecc
2︸ ︷︷ ︸

c0

+ĉ1 · cos (γ − 2π · n · t+ ϕecc) (7)

By inserting (7) into (3), the PM magnetization wave is modulated by its shape via the ratio
c (γ, t). With the used simplification, the modulation leads to the rotor air gap radial field
fundamental (8) in stator-fixed coordinates. Additionally, the air gap fields waves Becc,µ,k,r

occur (9). Owing to the model deficiency, (9) for 2-pole rotors also results in a zeroth order
space harmonic, which does not exist in reality.

BR,µ=p,k=p,r (rδ, γ, t) = c0 · B̂PM,p,p,r︸ ︷︷ ︸
B̂R,p,p,r(rδ)

· cos (p · γ − 2π · n · p · t+ ϕR) (8)

Becc,µ,k,r (rδ, γ, t) =
B̂PM,p,p,r · ĉ1

2
· cos

 (p± 1)︸ ︷︷ ︸
spatial
order µ

·γ − (p± 1)︸ ︷︷ ︸
time

order k

·2π · nt+ ϕR ± ϕecc

 (9)
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(a) Eccentricity air gap under pole: ϕecc = 0 (b) Eccentricity air gap under pole gap: ϕecc = π
2

Figure 3: Simulated radial magnetic field waves due to the eccentricity air gap δecc for a 2-
pole rotor with dimensions according to Figure 1c (magnetically linear material assumption
according to Table 2 and Brem = 1 T)

(a) Pole count 2p = 2, δecc = 0 (b) Pole count 2p = 4, δecc = 0

(c) Pole count 2p = 2, δecc = 100 µm (d) Pole count 2p = 4, δecc = 100 µm

Figure 4: 2D Fourier spectrum of the air gap flux density radial component B̂r in stator
reference frame from 2D finite element simulation (k: time harmonic order µ: space harmonic
order, evaluated at radius rs,i − δ/2)
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In the considered prototype machine with 2p = 2 poles, the eccentricity air gap δecc leads to a
radial field wave Becc,2,2,r of time order k = 2 and space order µ = 2. Under magnetically linear

material assumptions, the amplitude B̂ecc,2,2,r of this field wave rises linearly with the width of

the eccentricity air gap δecc (Fig. 3). Note that B̂ecc,2,2,r does not depend on the location of the
eccentricity air gap (angle ϕecc), so that the values in Fig. 3a are equal to Fig. 3b. Thus, in the
following analysis we set ϕecc = 0, so that the eccentricity air gap is located under the pole.
The amplitude of the fundamental rotor field wave B̂R,1,1,r decreases linearly in Fig. 3 according

to c0 (7). The rated suspension winding air gap field amplitude is B̂L,2,1,r = 8 mT for the
prototype machine. Since the modulated air gap field wave takes values Becc,2,2,r > 5 mT for
δecc > 130 µm (Fig. 3), even small eccentricity values can lead to radial force amplitudes in the
range of the rotor gravitational force. Compared to the rotor field fundamental, the modulated
field waves due to eccentricity are approximately smaller by factor 50. Thus, they may cause
crucial rotor forces but they certainly will not cause considerable additional iron losses. So, a
loss analysis of the eccentricity effect is omitted.
A more general representation of the air gap field wave harmonics is given in Fig. 4, which
shows the 2-dimensional Fourier spectrum of the air gap field radial component Br, used in
(2), with respect to time order k and space order µ [10]. Fig. 4b and 4d give the results for the
4-pole rotor with the same motor dimensions (Table 2). Fig. 4a and Fig. 4c show the 2-pole
rotor results. Fig. 4c and Fig. 4d show that – due to the eccentricity – additional field waves
Becc,µ,k,r occur with the time and space harmonic orders according to (9). The integration of
the Maxwell stress tensor (1) is zero for all combinations of two field waves with space orders
µ1, µ2 for which µ1 6= µ2 ± 1 holds. For µ1 = µ2 ± 1 the radial eccentricity force Fecc on the
rotor into an arbitrary direction, e.g. in x-direction (Fx,ecc = Fecc), is given in (10) for k1 and
k2 being the time harmonic orders of the involved field waves. The tangential field components
are neglected here for simplicity. For 2-pole machines, Fecc is given in (11), for 4-pole machines
the eccentricity force is composed of (12), (13).

Fecc (t) =
π · rδ · lFe

2 · µ0
·Bµ1,k1,r (rδ) ·Bµ2,k2,r (rδ) · sin((k2 − k1) 2πnt+ ϕ1 ± ϕ2) (10)

Fecc (t) |2p=2 =
π · rδ · lFe

2 · µ0
·BR,1,1,r (rδ) ·Becc,2,2,r (rδ) · sin(2πnt+ ϕR − ϕecc) (11)

Fecc,− (t) |2p=4 =
π · rδ · lFe

2 · µ0
·BR,2,2,r (rδ) ·Becc,1,1,r (rδ) · sin(2πnt+ ϕR + ϕecc) (12)

Fecc,+ (t) |2p=4 =
π · rδ · lFe

2 · µ0
·BR,2,2,r (rδ) ·Becc,3,3,r (rδ) · sin(2πnt+ ϕR − ϕecc) (13)

This shows that, that the eccentricity air gap δecc always leads to a rotational frequent radial
force Fecc which depends on the fundamental rotor field wave amplitude B̂R,p,p,r and on the
bore radius rs,i = rδ + δ/2. Also Fecc is much higher for 4-pole machines, since two field wave
combinations (µR = 2/µecc,1 = 1 (→ Fecc,−), µR = 2/µecc,2 = 3 (→ Fecc,+)) contribute to the
force generation (Fig. 4d).
The additionally occurring field waves Becc,µ,k do no generate eddy current losses in the rotor
parts, since these field waves move synchronously with the rotor: Transferring the field wave
(5) into rotor-fixed coordinates with the circumference angle γR = γ − 2π · n · t leads to the
time harmonic order kR in rotor coordinates. Independent of the pole count, for both spectra
in Fig. 4, it results kR = k − µ = 0 due to k = µ. Also in the stator the additional eddy
current and hysteresis losses of Becc,µ,k may be neglected due to the very small field amplitude
compared to the rotor field fundamental (Fig. 3).
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3 Influencing Parameters on Eccentricity Forces

The prior section has shown that the eccentricity force oscillates with mechanical rotation fre-
quency fm = n. In this section, we discuss which machine properties influence the amplitude
of this eccentricity force F̂ecc. Note that F̂ecc is not influenced by the angular position ϕecc

(7), (8), (9) of the maximum eccentricity air gap. That means, F̂ecc is identical for δecc being
located under a pole or under the pole gap (Fig. 3).
Fig. 5a (5b) indicates the eccentricity force amplitude F̂ecc for a 2-pole (4-pole) rotor topology
in dependence of the eccentricity air gap width δecc = 0, 50 µm, 100 µm, ..., 500 µm and the
PM remanence flux density Brem = 0.8 T, 0.9 T, ..., 1.3 T. The remanence flux density has
low influence on F̂ecc for small values of δecc and for large values of Brem. The eccentricity force
in a 4-pole topology is approximately bigger by factor 3 compared to 2-pole rotors which was
explained in Section 2. The values of the two 2-pole rotors, used for the prototype machine, are
marked in Fig. 5a. The NdFeB-rotor with the higher Brem-value is more prone to eccentricity
forces than the Sm2Co17-rotor. The eccentricity air gap is δecc = 50 µm for the Sm2Co17-rotor
and δecc = 100 µm for the NdFeB-rotor. Thus, the simulated eccentricity force is F̂ecc = 0.9 N
for the Sm2Co17-rotor and F̂ecc = 3.8 N for the NdFeB-rotor.
Fig. 6a (6b) indicates the eccentricity force amplitude F̂ecc for a 2-pole (4-pole) rotor topology in
dependence of the eccentricity air gap width δecc = 0, 50 µm, 100 µm, ..., 500 µm and thick-
ness hPM = 1 mm, 1.5 mm, ..., 5 mm of the PM ring. For small values of δecc the PM height
does hardly influence the eccentricity force. For high values of δecc the eccentricity force is low
if the PM height is rather small or rather big. This is because a big PM height increases the air
gap flux density but also increases the magnetically effective air gap B̂R,p,p,r ∝ hPM/ (hPM + δ).
This finding is independent of the pole count, but the eccentricity force is much bigger by ap-
proximately factor 3 for the 4-pole compared to the 2-pole topology.
Fig. 7a (7b) gives the eccentricity force amplitude F̂ecc for a 2-pole (4-pole) rotor topology in
dependence of the eccentricity air gap width δecc = 0, 50 µm, 100 µm, ..., 500 µm and the sta-
tor inner diameter 2 · rs,i = 20 mm, 25 mm, ..., 100 mm at Brem = 1 T. The PM height hPM

(a) Pole count 2p = 2 (b) Pole count 2p = 4

Figure 5: Simulated radial magnetic eccentricity force F̂ecc in N for varying magnetic eccentricity
air gap width δecc and varying remanence flux density Brem (dimensions according to Table 2,
assumption of magnetically linear materials)
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(a) Pole count 2p = 2 (b) Pole count 2p = 4

Figure 6: Simulated radial magnetic eccentricity force F̂ecc in N for varying magnetic eccentricity
air gap width δecc and varying PM height hPM (Brem = 1 T,dimensions according to Table 2,
assumption of linear materials)

(a) Pole count 2p = 2 (b) Pole count 2p = 4

Figure 7: Simulated radial magnetic eccentricity force F̂ecc in N for varying magnetic eccentric-
ity air gap width δecc and varying stator bore diameter 2 · rs,i (Brem = 1 T, hPM = 2.75 mm,
δ + hb = 2.5 mm, assumption of linear materials)

and the shaft radius is kept constant (hPM = 2.75 mm, rsh = 12.25 mm). The bore diameter
2 · rs,i and the eccentricity air gap width δecc both increase the F̂ecc-values to the same extent.
In (5) rs,i is included linearly. Also in Fig. 3 the linear relationship between δecc and the mod-

ulated air gap field wave B̂ecc,µ,k,r is proved. Therefore, especially machines with large bore
diameters are prone to magnetic eccentricity-originated forces. The findings are independent
of the pole count, but the eccentricity force is much bigger by approximately factor 3 for the
4-pole compared to the 2-pole topology.

8



Influence of Magnetic Eccentricity in Bearingless PM Synchronous Machines Dietz, Binder

4 Measurements and Influence on Rotor Position Control

At the prototype machine (Fig. 1) the suspension currents for horizontal rotor forces id,L and
for vertical rotor forces iq,L were measured at rotor standstill for 10 different equidistant rotor
angle positions (Fig. 9). The currents are averaged over 1 s. Since the rotor position is con-
stant, the dynamic controller properties are excluded from the measurements. The rotor is –
according to the calibrated radial eddy current position sensors – in the concentric position. It
is aligned with the vertical axis to avoid the influence of the gravitational force.
The measurement was conducted with the Sm2Co17-rotor (Fig. 9a) and with the NdFeB-rotor
(Fig. 9b). Both rotors exhibit a sine- and cosine-shaped radial disturbing force, which is com-
pensated by the suspension currents id,L and iq,L. Consequently, this radial force wave of

amplitude F̂ecc rotates synchronously with the rotor (time order k = 1).
The measured suspension force-current coefficients are kF,Nd = 1.09 N ·A−1 for the NdFeB-
rotor and kF,Sm = 1.01 N ·A−1 for the Sm2Co17-rotor. The AC component of the suspension

force is îecc = 3.42 A for the NdFeB-rotor and îecc = 0.83 A for the Sm2Co17-rotor. Thus, the
eccentricity forces are determined to be F̂ecc = 3.7 N for the NdFeB-rotor and F̂ecc = 0.83 N
for the Sm2Co17-rotor. These results agree with the simulation results at δecc = 180 µm for the
NdFeB-rotor (simulated: F̂ecc = 3.4 N) and at δecc = 50 µm for the Sm2Co17-rotor (simulated:
F̂ecc = 0.7 N). This eccentricity force Fecc (t) acts on the rotor according to Figure 8, in which
the rotor plant is shown without the tilting motions and the gyroscopic effect for simplicity. The
damping and oscillation behavior of the plant is determined by the controller settings, which
must overcome the negative magnetic stiffness ks,r (Fig. 8). In contrast to rotor unbalance

forces, the amplitude F̂ecc of the magnetic eccentricity force is speed-independent. Neglecting
the controller influence on the rotor movement and considering only the movement originated
by Fecc (t), the actual amplitude x̂ecc of the movement due to the eccentricity force decreases
with rising speed n = fm according to Newton’s law with x̂ecc ∝ 1/f2m (14).

Fecc (t) = F̂ecc · sin (2π · fm · t) = m · ẍecc ⇒ x̂ecc =
F̂ecc

m · (2π · fm)
2 (14)

−
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Figure 8: Simplified position controller circuit with eccentricity force Fecc, acting on the rotor
plant (neglect of rotor tilting motions and gyroscopic effect)
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(a) Sm2Co17 (b) NdFeB

Figure 9: Measured currents id,L, related to a bearing force in x-direction, and iq,L, related to
a bearing force in y-direction at concentric vertical rotor position for a varying rotation angle
γ at rotor standstill (id,L, iq,L expected to be zero for no magnetic eccentricity)

Fig. 10a shows the actual x-position of the NdFeB-rotor during a speed-up from n = fm = 0 to
n = fm = 240 Hz. Also the red line indicates the theoretical magnetic eccentricity originated
rotor movement amplitude x̂ecc according to (14). The rotor’s rigid body eigenfrequencies for
the chosen controller stiffness are at feig,1 = 48 Hz and feig,2 = 66 Hz. These eigenfrequencies
do not appear in the position signal with increased oscillation amplitudes due to the good damp-
ing behavior of the position controller. The rotor orbit decreases from x̂ = 52 µm at fm = 5 Hz
to x̂ = 26 µm at fm = 150 Hz. This decrease is owing to mechanical “damping“ property de-
scribed in (14). For fm > 155 Hz a “force-free“ rotation [11, 12] is enabled by notching out fm
in the position controller feedback signal. By this, the rotor orbit is even decreased due to the
poor position controller’s disturbance reaction in case of high-frequent disturbances.
Fig. 10b shows the suspension current id,L for the NdFeB-rotor during a speed-up from

n = fm = 0 to n = fm = 240 Hz. The current takes high values up to îd,L = 3 A at stand-
still due to magnetic eccentricity forces (Fig. 9b). The current amplitude even increases up to
îd,L = 4 A at fm = 150 Hz, since the position controller’s disturbance reaction to the rotational-
frequent forces worsens for higher frequencies. Thus, the rotation frequency fm is notched out
of the actual position sensors for fm > 155 Hz. Consequently, the AC component in the sus-
pension current id,L diminishes.
The effectiveness of the notch filter can also be seen by comparing Fig. 10c (operation at
fm = 20 Hz) with Fig. 10d (operation at fm = 200 Hz). At low speed – and, thus, a big
eccentricity-originated rotor movement x̂ecc – the position controller counteracts the rotor move-
ment with current nearly in phase opposition to the position signal. At high speed, the rotor
orbit is inherently small, since the magnetic eccentricity-originated rotor movement diminishes.
Additionally, the position controller shows no reaction to the rotational-frequent rotor oscilla-
tion, which occurs due to rotor unbalance.
The investigation shows that the magnetic eccentricity force Fecc does not influence the bear-
ingless machine’s operation at speeds n > 50 Hz. Even though it is not crucial for high-speed
operation, the suspension current amplitudes at low speed can be crucial. This criticality is
based on the inverter’s current limit. In Fig. 10a, 10b the torque-producing current was only
iq,D = 0.3 A and, thus, by factor 10 smaller than the suspension current.
For high machine dynamics, the speed-up process may be carried out with high torque-
producing current values iq,D. Also, the torque producing current leads to radial disturbing
force orthogonal to the controller’s reference force vector [13], which worsens the controller’s

10
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(a) Position sensor signal x during speed-up (b) Suspension current id,L during speed-up

(c) Suspension current id,L and position x at rota-
tion with f = 20 Hz

(d) Suspension current id,L and position x at rota-
tion with f = 200 Hz

Figure 10: Measured suspension current and position signal with the NdFeB-rotor at operation
with rotation frequency f < 240 Hz

reaction to the magnetic eccentricity forces. Therefore, the inverter’s current limit may be
reached very fast if the magnetic eccentricity force is big and the machine is accelerated fast.
For the prototype machine the inverter’s current limit is at imax = 16 A (momentary value),
which is reached if the torque-producing reference current at zero-speed is iq,D,ref > 10 A. Even
though the reference currents are below the inverter’s current limit, the over-current protection
can trip due to ripple in the actual current, caused by the pulse width modulation. For the
considered prototype, values of iq,D,ref > 10 A are only possible at speeds n = fm > 150 Hz.

5 Conclusion

Disturbing radial rotor forces in bearingless PM machines are discussed which have the origin
in an undesired half-moon shaped air gap between the permanent magnet and the rotor shaft.
The occurring radial force wave rotates with rotor frequency independent of the pole count.
Its amplitude increases for PMs with high remanence values and for machines with a large
bore diameter. Even for very small eccentricity air gaps of δecc < 200 µm the occurring force
amplitude can take considerable values of several N. Measurements on a prototype with a
NdFeB-rotor have shown that an eccentricity air gap of δecc = 180 µm leads to high suspension
currents, which can reach the inverter’s current limit. The resulting rotor orbit is very big at
low speed but decreases strongly with speed (∝ 1/n2) due to the rotor mass inertia, since the
eccentricity force amplitude is independent of the rotor speed. Thus, at high-speed operation
magnetic eccentricity forces are not crucial.
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