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Abstract

This paper introduces an axial-flux self-bearing permanent magnet motor that controls
motor torque, axial force, radial forces, and tilting moments by a single stator. A rotating
magnetic field with the same pole number as the rotor controls the motor torque and axial
force. Rotating magnetic fields with the rotor’s pole number plus and minus two poles
control the radial forces and tilting moments. These fields generate both radial forces and
tilting moments, and the direction of one of them becomes the same, and the other becomes
opposite. Hence, we can control the radial forces and tilting moments independently. This
paper describes the theoretical analysis of the radial forces and tilting moments and derives
the control currents of stator windings. Levitation and rotation tests of a prototype motor
confirm the proposed method.

1 Introduction

An axial-flux self-bearing motor (AFSBM) is a combination of a disk type permanent magnet
(PM) motor and active magnetic bearings and can simultaneously control both the motor torque
and position of the rotor [5]. One-, three-, and five-degrees-of-freedom (DOF) active-controlled
AFSBMs have been proposed.

The one-DOF active-controlled AFSBM controls motor torque and axial force by q- and
d-components of a magnetic field with the same pole number of the rotor. The three-DOF
active-controlled AFSBM utilizes the magnetic field with plus or minus two poles to control
the tilting moments of the rotor [2]. However, these fields generate not only the tilting moment
but also the radial force to the rotor. Therefore, it is necessary to use a sandwich structure to
cancel the radial force or adjust the center of gravity (COG) of the rotor to ensure the stability
of tilt control [3].

On the other hand, by utilizing this characteristic five-DOF active-control can be realized.
Osa et al. have developed the five-DOF active-controlled AFSBM for small size artificial heart
pump [1]. However, this motor requires a sandwich structure to control both the radial forces
and tilting moments and restricts the design of the whole device. To solve this problem, we
have proposed the different type five-DOF active-controlled AFSBM that uses unipolar and
four-pole magnetic fields to control the radial force and tilting moment for a two-pole PM
rotor [4]. Since the proposed motor does not require a sandwich structure, it can improve the
flexibility of design. However, this AFSBM requires two pairs of the rotor and stator, then the
mechanism and controller became complex.

This paper introduces a novel AFSBM that uses plus and minus two-pole magnetic fields to
control the radial forces and tilting moments to realize a simple structure. Since the proposed
method requires only a pair of the rotor and the stator, the structure becomes simple.
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Figure 2: Principle.

In this paper, moments and forces generated by an AFSBM are analyzed theoretically by
using a current sheet model. The stator currents are then calculated to control the motor torque
and rotor position. Levitation and rotation tests of a prototype motor confirm the proposed
method.

2 Axial-Flux Self-Bearing Motor

Fig. 1 shows the structure of the proposed AFSBM. A rotor is a flat disk, and PMs are attached
to the upper side of the rotor. P denotes the number of pole pairs. A stator consists of an iron
core and windings which generate rotating magnetic fields with P − 1, P , and P +1 pole pairs.
Sensors measure the displacements and rotation angles of the rotor, then the rotor position and
posture are stabilized by feedback control.

Fig. 2 shows the principle of the generation of motor torque, axial force, radial force, and
tilting moment. It illustrates a four-pole rotor as an example. The d-axis component of the
four-pole current generates the magnetic field at the same as the magnetic field generated by
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the rotor PM. Then it controls the axial force by changing the amplitude of the magnetic flux
density in the air gap. The q-axis component of the four-pole current generates the motor
torque by the Lorentz force. Two- and six-pole currents generate both radial forces and tilting
moments by magnetic force and Lorentz force. However, the direction of one of them is different,
e.g., Fa2 and Fa6 is the opposite, while Ta2 and Ta6 are the same. Therefore, we can control
the radial forces and tilting moments by combining two- and six-pole currents.

3 Analysis of Bearing Force and Motor Torque

3.1 Coordinate System

Motor torque, axial force, radial forces, and tilting moments are theoretically analyzed.
A coordinate system is defined as Figure 3. x-y is the horizontal plane, and θx and θy are

rotation around them. z is vertical, and θ is rotation around z. Since the upper surface of the
rotor is the acting point of magnetic force, that point is the origin of z.

ψ is the rotation angle of the rotor. The origin of θ is at ψ. a-b is the horizontal plane fixed
on the rotor, and θa and θb are rotation around them.

d-axis is the same as a-axis, and q-axis depends on the pole-pair number of the magnetic
field and is at θ = π/(2P ).

We replace the stator windings and the rotor PMs with current sheets for simplification.
The positive direction of the current is from outside to inside. The direction of the magnetic
flux density is the same as z, then the direction of Lorentz force becomes counterclockwise. g0
is the air gap between the stator and rotor cores. ro, ri, and r are outer, inner, and average
radii, respectively. The surface area of the core is represented by A = π(r2o − r2i ).

3.2 Current and Magnetic Flux Density

For simplicity, we assume current distribution to be sinusoidal as

i(θ) = I sin (Pθ + ϕ) (1)

where I and ϕ denote the amplitude and phase of current, respectively.

Stator

Rotor

COG
(b) Side View

Lorentz force

Magnetic flux Density
(a) Top View of Rotor

Core
Current sheet

Figure 3: Coordinate system.
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Figure 4: Magnetic circuit.

Figure 4 shows a magnetic circuit that considers only the current at θ+δ+nπ/P , where n =
0, 1, · · · , P−1. The currents at θ+δ+2nπ/P are i(θ+δ), and the currents at θ+δ+(2n+1)π/P
are −i(θ+δ). A blue line indicates a magnetic path generated by the currents. The cross section
of the magnetic path is A/(2P ), and the number of air gaps in the magnetic path is 2P , then
the total magnetic resistance in the magnetic path becomes 4g0P

2/(µ0A). Since the number
of current loops is P , the total magnetomotive force becomes Pi(θ + δ). Consequently, the
magnetic flux density at θ is calculated as

∆B(θ) =
µ0A

4g0P 2
Pi(θ + δ)

2P

A
=

µ0

2g0
I sin {P (θ + δ) + ϕ} (2)

We can calculate the magnetic flux density by the whole current by integrating ∆B(θ) with
respect to δ from 0 to π/P , then we have

B(θ) =

∫ π/P

0

∆B(θ)dδ =
µ0

g0

I

P
cos (Pθ + ϕ) (3)

The equivalent rotor current and magnetic flux density by the rotor PM are denoted by
adding subscript r. ϕ of ir(θ) is 0 because cos (Pθ + ϕ) of Br(θ) becomes 1 at d-axis (θ = 0).
Hence,

ir(θ) = Ir sin(Pθ) (4)

The stator current, denoted by is(θ), is assumed to be the sum of the currents with P − 1,
P , and P + 1 pole pairs. Each current is decomposed into d- and q-axis components. The
amplitude of each component is denoted by adding subscript d, q, P −1, P , and P +1. ϕ of the
d-axis component is 0, on the other hand, ϕ of the q-axis component is −π/2 because q-axis is
located at θ = π/(2P ). Then, the stator current is expressed by

is(θ) = iP−1(θ) + iP (θ) + iP+1(θ) (5)

where

iP−1(θ) = IdP−1 sin {(P − 1)θ} − IqP−1 cos {(P − 1)θ} (6)

iP (θ) = IdP sin (Pθ)− IqP cos (Pθ) (7)

iP+1(θ) = IdP+1 sin {(P + 1)θ} − IqP+1 cos {(P + 1)θ} (8)
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3.3 Force and Torque

The attractive force between the stator and the rotor of a small angle is expressed by

∆FM =
A

4πµ0
{Br(θ) +Bs(θ)}2 dθ (9)

The axial force is calculated as

Fz =

∫ 2π

0

∆FM =
µ0A

4g20P
2

{
(Ir + IdP )

2
+ I2qP + I2dP−1 + I2qP−1 + I2dP+1 + I2qP+1

}
(10)

The tilting moments around a and b are calculated as

Ta =

∫ 2π

0

r sin θ∆FM =
µ0Ar

4g20P
2
{(−IqP−1 + IqP+1) (Ir + IdP ) + (IdP−1 − IdP+1) IqP } (11)

Tb =

∫ 2π

0

−r cos θ∆FM =
µ0Ar

4g20P
2
{(−IdP−1 − IdP+1) (Ir + IdP ) + (−IqP−1 − IqP+1) IqP }

(12)

Assume that Ir is larger than the other currents, we can neglect the product of the stator
currents. Therefore,

Fz ≈ µ0A

4g20P
2
I2r +

µ0A

2g20P
2
IrIdP = Fz0 +KzIdP (13)

Ta ≈ µ0Ar

4g20P
2
Ir (−IqP−1 + IqP+1) = −KtIqP−1 +KtIqP+1 (14)

Tb ≈
µ0Ar

4g20P
2
Ir (−IdP−1 − IdP+1) = −KtIdP−1 −KtIdP+1 (15)

where Fz0 is the attractive force with zero current, and Kz and Kt are the coefficients of the
force and torque, respectively.

The Lorentz force at θ is expressed by

FL = (ro − ri) {Bs(θ)ir(θ)−Br(θ)is(θ)} (16)

The motor torque is calculated as

Tm =

∫ 2π

0

rFLdθ =
µ0A

g0P
IrIqP = KmIqP (17)

where Km is the coefficient of the motor torque. The radial forces are calculated as

Fa =

∫ 2π

0

−FL sin θdθ =
µ0A

4g0P 2r
Ir {− (2P − 1) IdP−1 + (2P + 1) IdP+1}

= −KrP−1IdP−1 +KrP+1IdP+1 (18)

Fb =

∫ 2π

0

FL cos θdθ =
µ0A

4g0P 2r
Ir {(2P − 1) IqP−1 + (2P + 1) IqP+1}

= KrP−1IqP−1 +KrP+1IqP+1 (19)

where KrP−1 and KrP+1 are the coefficients of the radial forces.
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A rotational transformation calculates the radial forces toward x and y and tilting moments
around x and y. By rearranging the transformed equations, we have[

Ty
Fx

]
=

[
−Kt −Kt

−KrP−1 KrP+1

] [
ITyFxP−1

ITyFxP+1

]
(20)[

Tx
Fy

]
=

[
−Kt Kt

KrP−1 KrP+1

] [
ITxFyP−1

ITxFyP+1

]
(21)

where [
ITyFxP−1

ITxFyP−1

]
=

[
cosψ sinψ
− sinψ cosψ

] [
IdP−1

IqP−1

]
(22)[

ITyFxP+1

ITxFyP+1

]
=

[
cosψ − sinψ
sinψ cosψ

] [
IdP+1

IqP+1

]
(23)

From Eqs. (6), (8), (22) and (23), iP−1(θ) and iP+1(θ) are rewritten as

iP−1(θ) = −ITyFxP−1 sin {ψ − (P − 1) θ} − ITxFyP−1 cos {ψ − (P − 1) θ} (24)

iP+1(θ) = ITyFxP+1 sin {ψ + (P + 1) θ} − ITxFyP+1 cos {ψ + (P + 1) θ} (25)

3.4 Control of Torque and Force

Eqs. (17) and (13) show that IqP can control Tm and IdP can control Fz. These are the same
as one-DOF active-controlled AFSBMs.

Eqs. (20) and (21) show that ITxFyP−1 and ITxFyP+1 generate both Tx and Fy, while
ITxFyP−1 and ITxFyP+1 generate both Tx and Fx. Moreover, Fx and Fy generate not only
the radial force but also the tilting moment around the COG of the rotor; Fy generates −zgFy

around x-axis, and Fx generates zgFx around y-axis. Therefore, the following relationships are
obtained. [

TGy

FGx

]
=

[
− (Kt + zgKrP−1) − (Kt − zgKrP+1)

−KrP−1 KrP+1

] [
ITyFxP−1

ITyFxP+1

]
(26)[

TGx

FGy

]
=

[
− (Kt + zgKrP−1) Kt − zgKrP+1

KrP−1 KrP+1

] [
ITxFyP−1

ITxFyP+1

]
(27)

Since both determinants of the coefficient matrices are non-zero, the solutions of the above
equations are[

ITyFxP−1

ITyFxP+1

]
=

1

−Kt (KrP−1 +KrP+1)

[
KrP+1 Kt − zgKrP+1

KrP−1 − (Kt + zgKrP−1)

] [
TGy

FGx

]
(28)[

IFyTxP−1

IFyTxP+1

]
=

1

−Kt (KrP−1 +KrP+1)

[
KrP+1 − (Kt − zgKrP+1)
−KrP−1 − (Kt + zgKrP−1)

] [
TGx

FGy

]
(29)

These equation give the amplitudes of Eqs. (24) and (25).

4 Experimental Verification

We made and tested a prototype motor to verify the proposed control method.
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4.1 Experimental Device and Control System

Fig. 5 shows the rotor. Rectangular PMs are adopted because it is easily accessible. Eight PMs
are attached to a back iron to generate a four-pole magnetic field, then the pole pair number
of the rotor is P = 2. We attached a sensor target for radial sensors under the disk.

Fig. 6 shows the stator. Twelve air core coils were made, and attached to a back iron. The
location of coils are expressed as

θk =
2π

12
(k − 1)− ψ, k = 1, · · · , 12 (30)

Since the stator is the concentrated windings, the phase of the stator currents needs the phase
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lead of π/2. Therefore, each coil current can be calculated from Eqs. (7), (24), and (25) as

ik =− ITyFx1 cos

{
2ψ − 2π

12
(k − 1)

}
+ ITxFy1 sin

{
2ψ − 2π

12
(k − 1)

}
+ Id2 cos

{
2ψ − 4π

12
(k − 1)

}
− Iq2 sin

{
2ψ − 4π

12
(k − 1)

}
+ ITyFx3 cos

{
2ψ − 6π

12
(k − 1)

}
− ITxFy3 sin

{
2ψ − 6π

12
(k − 1)

}
(31)

Fig. 7 shows the whole device. Five eddy current sensors are installed under the rotor and
measure the displacement of the rotor. The displacements and tilt angles about the COG of
the rotor are calculated from the sensor values.

Fig. 8 shows the control system. A digital signal processor (DSP) controls the prototype
motor. The DSP reads the sensor signals via analog to digital (AD) converters and calculates
the current commands, then outputs the current commands to power amplifiers via digital
to analog (DA) converters. The amplifiers that consist of a power operational amplifier (TI:
OPA549S) with a current feedback circuit send the commanded currents through the coils. The
sampling interval is 0.15 ms.

Fig. 9 shows the block diagram of the controller. The following proportional-derivative
(PD) controller is adopted for position control.

GPD(s) = KP +KD
s

s/ωb + 1
(32)
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Figure 9: Controller.

KP KD ωb

z 2 A/mm 0.02 As/m 2π × 200 rad/s
θx, θy 50 A/rad 0.5 As/rad 2π × 200 rad/s
x, y 2 A/mm 0.05 As/m 2π × 200 rad/s

Table 1: Gains of PD controllers.

where KP is a proportional gain, KD is a derivative gain, and ωb is the brake frequency of the
approximate differentiator. The PD controllers are converted to discrete-time transfer functions
by the Tustin method and implemented to the DSP. To determine the gains experimentally,
the outputs of the controllers are the control currents instead of the commands of the forces
and tilting moments. Table 1 shows the gains of the controllers. C1 and C2 in Fig. 9 are
transformation matrices, and described as[

ITyFx1

ITyFx3

]
= C1

[
ITy

IFx

]
=

[
−cT −cF
−1 1

] [
ITy

IFx

]
(33)[

ITxFy1

ITxFy3

]
= C2

[
ITx

IFy

]
=

[
−cT cF
1 1

] [
ITx

IFy

]
(34)

where cT and cF were experimentally determined as cT = 1.7 and cF = 0.9. The rotation speed
is controlled by the angular frequency of the stator currents.

4.2 Results of Levitation and Rotation Tests

We achieved non-contact levitation and rotation.
Fig. 10 shows step responses without rotation. These were measured by injecting step

disturbance signals into the output of the PD controllers. The amplitude was 0.5 A and −0.5
A. The displacements and tilt angles settled without overshoot. These indicate that all axes
are well actively controlled. There are interference between θx and y in case of ITx

= −0.5 A,
and θy and x in case of ITy

= 0.5 A. We will investigate this problem in the future.
Fig. 11 shows the waveforms while rotation. The vibration in x and y directions increased

by increasing the rotation speed. Since the radial vibration is caused by the unbalance of the
rotor, the vibration became large at a high rotation speed. On the other hand, the vibration
in θx and θy decreased by increasing the rotation speed due to a gyroscopic effect.

We stepped the rotation test at 900 rpm because the radial vibration became large. The
rotation speed will increase by adjusting the rotor balance.

9



-0.2

0

0.2

D
is

p.
 [

m
m

]

-0.02 0 0.02 0.04 0.06 0.08 0.1 s

-0.01

0

0.01

T
ilt

 [
ra

d]

-0.2

0

0.2

D
is

p.
 [

m
m

]

-0.02 0 0.02 0.04 0.06 0.08 0.1 s

-0.01

0

0.01

T
ilt

 [
ra

d]

(a) ITx

-0.2

0

0.2

D
is

p.
 [

m
m

]

-0.02 0 0.02 0.04 0.06 0.08 0.1 s

-0.01

0

0.01

T
ilt

 [
ra

d]

-0.2

0

0.2

D
is

p.
 [

m
m

]

-0.02 0 0.02 0.04 0.06 0.08 0.1 s

-0.01

0

0.01

T
ilt

 [
ra

d]

(b) ITy

-0.2

0

0.2

D
is

p.
 [

m
m

]

-0.02 0 0.02 0.04 0.06 0.08 0.1 s

-0.01

0

0.01

T
ilt

 [
ra

d]

-0.2

0

0.2

D
is

p.
 [

m
m

]

-0.02 0 0.02 0.04 0.06 0.08 0.1 s

-0.01

0

0.01

T
ilt

 [
ra

d]

(c) IFx

-0.2

0

0.2

D
is

p.
 [

m
m

]

-0.02 0 0.02 0.04 0.06 0.08 0.1 s

-0.01

0

0.01

T
ilt

 [
ra

d]

-0.2

0

0.2

D
is

p.
 [

m
m

]

-0.02 0 0.02 0.04 0.06 0.08 0.1 s

-0.01

0

0.01

T
ilt

 [
ra

d]

(d) IFy

Figure 10: Step responses.
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Figure 11: Waveforms while rotation.

5 Conclusions

In this paper, we introduced a five-DOF active-controlled AFSBM with a single stator. The
theoretical analysis showed that the combination of the plus and minus two-pole magnetic fields
controls the radial forces and tilting moments of the rotor. We succeeded in stable levitation
and rotation until 900 rpm and confirmed that the proposed method is effective.
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