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Abstract

Active magnetic bearings (AMBs) use the controlled magnetic force to achieve friction-
less relative motion between the stator and the rotor. In the case of a large operating
speed range, the gyroscopic effect, the unbalance force, the unmodeled dynamics and dis-
turbances in the rotor-AMBs system has become a non-negligible factor that may influence
the stability and the dynamic behavior of the system. To avoid this problem, robust con-
trol methods based on signal compensation are applied to design the controllers of the
rotor-AMBs system in this paper. Firstly, the rigid rotor-AMBs system is described with
lumped uncertainties under sensor general coordinates system. On the basis of the model,
the control system is designed. The control system contains nominal controllers and com-
pensators. The target of the nominal controller is to stabilize the nominal part of the
system. The robust compensator aims to generate the compensation signal to suppress
the lumped uncertainties equivalent disturbance robustly. According to the design, we
have done laboratory experiments on an AMB-supported industrial permanent magnet
synchronous motor (PMSM). The results show that the design method based on signal
compensation has good performance.

1 Introduction

Active magnetic bearings (AMB) is widely used in rotating machinery because of its advantages
of no friction, no lubrication or sealing requirements, long lifespan, low maintenance and active
vibration control [11, 12, 14]. However, the design of magnetic bearing controller relies on
accurate rotor-AMBs system modeling as well as precise external disturbance modeling, which
restrict the industrial application and popularization of magnetic bearing. In fact, the AMB
controller often requires a long time to adjust related parameters while in operation.

In recent years, many researches have focused on AMB controller design in order to achieve
better vibration suppression performance and improve the robustness of the controller. As
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for vibration suppression, plentiful good controllers have been proposed. Shiqiang Zheng et
al. [2] proposed a feed-forward control strategy combined with a novel adaptive notch filter
to solve the rotor unbalance problem in magnetic suspended centrifugal compressors. To the
same problem, Qi Chen, et al. [1] put forward a double-loop compensation design approach
based on the AMBs. Fang et al. [4] designed a gain phase modifier to compensate the gain
and phase errors caused by the power amplifier and completely achieved automatic balance
of the rotor. Zhang Kai, et al. [8] designed a comprehensive controller for the AMBs on a
turbo molecular pump, using different methods to suppress different kinds of vibration. Jiang
et al. [6] realized multi-frequency periodic vibration suppressing in active magnetic bearing-
rotor systems through response matching in frequency domain. However, the premise of good
performance of these controllers is the exact model of the external forces and the system model.

To achieve enough robustness, adaptive control strategy, robust control strategy, active dis-
turbance rejection strategy and many other methods have been applied on AMBs. Dhyani et
al.[3] applied heuristic moth-flame optimization algorithm to optimize the scaling factors of
the fuzzy-PID controller in a AMBs system. Under this algorithm, the AMBs showed great
robustness to external periodic excitations and step input. Su et al. [13] proposed a PID-
surface sliding mode control method, which possessed high tracking accuracy and anti-jamming
capacity. In [10], an adaptive back-stepping control based on sliding mode approach is ap-
plied to a linearized model of an active magnetic bearing system in order to deal with the
external disturbance. In [7] and [5], an PID controller with extended state observer (ESO)
is applied on decentralized control of AMB-rotor system and corresponding experiments have
been performed. In [9], an robust controller with feedback-linearization ESO is employed on
a MSCMGs system and achieves good performance. However, these controllers have relatively
more complex structure and the parameters adjustment procedure.

This paper proposes a robust controller based on signal compensation. It contains a PD
controller as nominal controller and a simple-structure robust compensator. Corresponding
experimental verification has been carried out on an industrial AMB-supported permanent
magnet synchronous motor (PMSM) test rig. The proposed strategy is compared with a PID
controller with the same nominal controller. The results show that the proposed control strategy
is effective.

2 System modeling

Figure 1: Structure of the AMB-rigid rotor system.
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The structure of the AMB-rigid rotor system is shown in Fig.1. The terms xc, yc represent
rotor’s centroid’s displacement; α, β are the rotor’s angular displacement around x and y axes.
The terms lbA, lbB , lsA, lsB show the distance between the A/B bearing/sensor and the centroid.
In AMB-rigid rotor system, the coupling between the axial DOF and radial DOF is negligible.
Thus, axial DOF is not mentioned in this model and merely radial 4 DOF and axial angle γ
are considered. There are three coordinates to illustrate the motion of rotor, which are cen-

troid coordinate yc =
[
xc α yc β

]T
, sensor coordinate ys =

[
ysAx ysAy ysBx ysBy

]T
,

and bearing coordinate yb =
[
ybAx ybAy ybBx ybBy

]T
. The relation between them can be

expressed as ys = Tscyc,yc = Tcbyb, in which

Tcb =


1 0 1 0
0 −lbA 0 lbB
0 1 0 1
lbA 0 −lbB 0



Tsc =


1 0 0 lsA
0 −lsA 1 0
1 0 0 −lsB
0 lsB 1 0


The bearing force is defined as f bb =

[
fbAx fbAy fbBx fbBy

]T
, with the load defined as

f cg =
[
f cgx f cgα f cgy f cgβ

]T
. According to the second Lagrange equation, the equation of

motion (EOF) of the rotor is obtained:
mẍc = fbAx + fbBx + f cex + f cgx

Jrα̈+ Jz γ̇β̇ = −lbAfbAy + lbBfbBy + f ceα + f cgα
mÿc = fbAy + fbBy + f cey + f cgy

Jrβ̈ − Jz γ̇β̇ = lbAfbAx − lbBfbBx + f ceβ + f cgβ

(1)

where the unbalance force can be rewritten in vector form

f ce =


f cex
f ceα
f cey
f ceβ

 = γ̇2


−mey mex
−Jxz −Jyz

mex mey
−Jyz Jxz

[ sin γ
cos γ

]

Transform (1) to sensor coordinate yields (2)

ÿsAx = − JzΩlsA
Jr(lsA+lsB)

(
ẏsAy − ẏsBy

)
+
(

1
m + lbAlsA

Jr

)
fbAx +

(
1
m − lsAlbB

Jr

)
fbBx + fseAx + fsgAx

ÿsAy = − JzΩlsA
Jr(lsA+lsB) (ẏsBx − ẏsAx) +

(
1
m + lbAlsA

Jr

)
fbAy +

(
1
m − lsAlbB

Jr

)
fbBy + fseAy + fsgAy

ÿsBx = − JzΩlsB
Jr(lsA+lsB)

(
ẏsBy − ẏsAy

)
+
(

1
m − lbAlsB

Jr

)
fbAx +

(
1
m + lbBlsB

Jr

)
fbBx + fseBx + fsgBx

ÿsBy = − JzΩlsB
Jr(lsA+lsB) (ẏsAx − ẏsBx) +

(
1
m − lbAlsB

Jr

)
fbAy +

(
1
m + lbBlsB

Jr

)
fbBy + fseBy + fsgBy

(2)
The rotor centroid’s precise position is difficult to determine due to its complex shape and its
heterogeneous material, which indicate (2) has uncertainty. This uncertainty can be regarded
as contained in fg.
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As for AMBs, no matter what control strategy is applied, the bearing force can always be
considered as the expected control force generated by a specific controller:

fbn ≈ un, n = Ax,Ay,Bx,By (3)

where un is the expected control force.
So that (2) can be rewritten as (4). In (4), each sensor coordinate’s differential equation is

decoupled formally and the plant model of the decentralized controller can be obtained from
this. 

ÿsAx =
(

1
m + lbAlsA

Jr

)
uAx + dAx

ÿsAy =
(

1
m + lbAlsA

Jr

)
uAy + dAy

ÿsBx =
(

1
m+ lbBlsB

Jr

)
uBx + dBx

ÿsBy =
(

1
m+ lbBlsB

Jr

)
uBy + dBy

(4)

In (4), d represents the static coupling (coupling of u) and the dynamic coupling (coupling
of ,which means the gyroscopic effect), the specific expression is

dAx =
(

1
m − lsAlbB

Jr

)
uBx − JzΩlsA

Jr(lsA+lsB)

(
ẏsAy − ẏsBy

)
+ fseAx + fsgAx

dAy =
(

1
m − lsAlbB

Jr

)
uBy − JzΩlsA

Jr(lsA+lsB) (ẏsBx − ẏsAx) + fseAy + fsgAy

dBx =
(

1
m − lbAlsB

Jr

)
uAx − JzΩlsB

Jr(lsA+lsB)

(
ẏsBy − ẏsAy

)
+ fseBx + fsgBx

dBy =
(

1
m − lbAlsB

Jr

)
uAy − JzΩlsB

Jr(lsA+lsB) (ẏsAx − ẏsBx) + fseBy + fsgBy

(5)

3 Controller design

The AMB controller can be divided into three parts: driven mode of AMB and centralized
controller. The centralized controller then contains nominal controller and robust compensator.

3.1 Driven mode of AMB

The driven mode of AMB refers to the realization of the expected AMB force. The differential
driven mode is a traditional application in industrial AMBs, shown in Fig.2. In differential
driven mode, the current in the magnet pole contains bias current i0 and control current ic. A
pair of opposite magnet poles together control one degree of freedom (DOF). The current in
this pair of opposite magnet poles share the same bias current and and inverse control current,
which can be written as in1=i0n+ icn, in2=i0n− icn. In one magnet pole, the electromagnetic force
generated by the single pole of the magnetic bearing can be expressed as

fp = k
i2

s2
, k =

µ0AN
2

4
cos θ (6)

where i is the current, s is the gap, µ0 is the magnetic field constant in vacuum, N is the
number of coils turns, A is the cross-section area of the pole and θ is the angle of the pole. In
differential driven mode, the AMB force can be written as

fbn =
k(in1)

2(
s0 − ybk

)2 − k(in2)
2(

s0 + ybk
)2 , n = Ax,Ay,Bx,By (7)
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The expected AMB force can be designed by linearizing (7) at the balance position and the
bias current.

un = kii
c
n + kxy

b
n

ki = 4k i
0

s20
, kx = 4k

(i0)
2

s30
n = Ax,Ay,Bx,By

(8)

Figure 2: The differential driven mode of single DOF AMB-rotor system.

The framework of the differential driven mode in the controller can be described as Fig.3.
In Fig.3, Gc(s) refers to the transfer function of the centralized controller in each channel.

Figure 3: The framework of the differential driven mode in the controller.
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3.2 Centralized controller

The centralized controller contains contains nominal controller and robust compensator. The
framework of the centralized controller is shown in Fig.4. The nominal controller aims to
stabilized the nominal system and the compensator aims to estimate the lumped uncertainties
d according to the response signal y as well as the control signal u.

Figure 4: The framework of the centralized controller.

According to (4) and Fig.4, it is obvious that the nominal plant of the system is ddoty = au.
In fact, proportional-differential (PD) form of nominal controller (shown in (9)) is enough to
stabilize the nominal system.

Gn (s) =
u0 (s)

y (s)
= kP +

kDs

τDs+ 1
(9)

As for compensator, it requires compensate the influence of lumped uncertainties. According
to (4) and Fig.4, the plant with lumped uncertainties can be written as:

y (s) =
a

s2
u (s) +

1

s2
d (s) (10)

The total control signal u is

u (s) = u0 (s) + v (s) (11)

Taken (11) into (10), it obtains

y (s) =
a

s2
Gn (s) y (s) +

1

s2
[av (s) + d (s)] (12)

Equation (12) indicates that the best choice to compensate the lumped uncertainties is

v∗ (s) = −1

a
d (s) = u (s) − s2

a
y (s) (13)

However, (13) is a non-causal signal. Thus, a robust filter F (s) is required and the compensation
signal can be written as:

v (s) = F (s) v∗ (s) (14)

Taken F (s) as

F (s) =
β3

s3 + β1s2 + β2s+ β3
(15)
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Then, the compensator has a specific expression

v (s) =
β3

s3 + β1s2 + β2s+ β3
u (s) − 1

a

β3s
2

s3 + β1s2 + β2s+ β3
y (s) (16)

The characteristics function of the compensator is

s3 + β1s
2 + β2s+ β3 = 0 (17)

To ensure the stability of the compensator, corresponding parameters can taken as

β1= 3ω0, β2= 3ω2
0 , β3=ω3

0 (18)

4 Experimental verification

Figure 5: Description of the test rig.

In order to verify the effectiveness of the proposed control method, verification experiments
are carried out on the magnetic bearing test rig. The experimental test rig for this study is a
PMSM at Tsinghua University, pictured in Fig.5. The rotor of the test rig is 0.4866 m long with
a total mass of 13.98 kg and is horizontally supported by two radial AMBs and one axial AMB.
The radial clearance of the AMBs is 0.4 mm and the clearance of touchdown bearings is 0.2
mm. Radial and axial displacements of the rotor were measured using five inductive sensors.
Ten current-controlled pulse width modulated amplifiers power the magnet coils to generate
the expected bearing force.

The test rig works originally under a decentralized differential PID controller with a bias
current of 2.5 A. This provides an open-loop bearing negative stiffness of 3.08 × 105 N/m and
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a current gain of 49.34 N/A. The equivalent stiffness brought by the original PID controller
is 2 × 105 N/m. For comparison, the PD parameter in the designed controller takes the same
value as the original PID.

The displacement response at sensor of original PID controller and the proposed PD-
Compensator controller at the rotating speed from 0 to 100 Hz (6000 r/min) are shown in
Fig.6. In Fig.6, the peak value under PID appears at 37 Hz while that of PD-Compensator
controller appears at 47 Hz. Besides, from 50 Hz to 70 Hz, the radius response under PD-
Compensator controller is larger than that of PID. In fact, the performance of the compensator
depends on filter F (s). The crossover frequency of F (s) was designed at 45 Hz in this test rig,
which means the compensator will not compensate the unbalance force when the rotating speed
is over 45 Hz. From another perspective, the compensator can be considered as a revision of
equivalent stiffness and damping on the basis of PD controller. This indicates that compen-
sator, in a way, enlarge the bearing stiffness below the crossover frequency and narrow it above
the crossover frequency. In other words, compensator will not compensate the unbalance force
any more in high frequency range and will not influence the realization of self-balance at high
speed.

5 Conclusion

In view of the gyroscopic effect, the unbalance force, the unmodeled dynamics and disturbances
in the rotor-AMBs system, a robust controller based on signal compensation was proposed in
this study to increase the robustness of the controller.Firstly, a decentralized controller plant
model was developed with lump uncertainties. On the basis of the model, the control system is
designed. The control system contains nominal controllers and compensators. The target of the
nominal controller is to stabilize the nominal part of the system. The robust compensator aims
to generate the compensation signal to suppress the lumped uncertainties equivalent disturbance
robustly. Corresponding experimental verification has been carried out on an industrial AMB-
supported PMSM test rig. The proposed strategy is compared with a PID controller with the
same nominal controller. The results show that the proposed control strategy is effective.

References

[1] Qi Chen, Gang Liu, and Bangcheng Han. Unbalance vibration suppression for ambs system using
adaptive notch filter. Mechanical Systems and Signal Processing, 93:136–150, 2017.

[2] Qi Chen, Gang Liu, and Shiqiang Zheng. Suppression of imbalance vibration for ambs controlled
driveline system using double-loop structure. Journal of Sound and Vibration, 337:1–13, 2015.

[3] Abhishek Dhyani, Manoj Kumar Panda, and Bhola Jha. Moth-flame optimization-based fuzzy-pid
controller for optimal control of active magnetic bearing system. Iranian Journal of Science and
Technology, Transactions of Electrical Engineering, 42(4):451–463, 2018.

[4] Jiancheng Fang, Xiangbo Xu, and Jinjin Xie. Active vibration control of rotor imbalance in active
magnetic bearing systems. Journal of vibration and control, 21(4):684–700, 2015.

[5] Xudong Guan, Jin Zhou, Chaowu Jin, and Yuanping Xu. Disturbance suppression in active
magnetic bearings with adaptive control and extended state observer. Proceedings of the Institution
of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 234(2):272–284,
2019.

[6] Kejian Jiang and Changsheng Zhu. Multi-frequency periodic vibration suppressing in active mag-
netic bearing-rotor systems via response matching in frequency domain. Mechanical Systems and
Signal Processing, 25(4):1417–1429, 2011.

8



Robust Control of Rigid Rotor Active Magnetic Bearing System Based on Signal Compensation Yichen Yao

[7] Chaowu Jin, Kaixuan Guo, Yuanping Xu, Hengbin Cui, and Longxiang Xu. Design of magnetic
bearing control system based on active disturbance rejection theory. Journal of Vibration and
Acoustics, 141(1), 2019.

[8] Z. Kai, J. Dong, X. Dai, and X. Zhang. Vibration control of a turbo molecular pump suspended
by active magnetic bearings. AMER SOC Mechanical Engineers, pages 795–799, 2011.

[9] Chao Liu, Gang Liu, and Jiancheng Fang. Feedback linearization and extended state observer-
based control for rotor-ambs system with mismatched uncertainties. IEEE Transactions on In-
dustrial Electronics, 64(2):1313–1322, 2017.

[10] Hai Rong and Kai Zhou. Nonlinear zero-bias current control for active magnetic bearing in power
magnetically levitated spindle based on adaptive backstepping sliding mode approach. Proceedings
of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,
231(20):3753–3765, 2016.

[11] Gerhard Schweitzer and Eric H Maslen. Magnetic bearings. theory, design, and application to
rotating machinery. 2009.

[12] R. Siva Srinivas, R. Tiwari, and Ch Kannababu. Application of active magnetic bearings in flexible
rotordynamic systems – a state-of-the-art review. Mechanical Systems and Signal Processing,
106:537–572, 2018.

[13] Te-Jen Su, Wen-Pin Kuo, Van-Nam Giap, H Quan Vu, and Quang-Dich Nguyen. Active magnetic
bearing system using pid-surface sliding mode control. In 2016 Third International Conference on
Computing Measurement Control and Sensor Network (CMCSN), pages 5–8. IEEE.

[14] Weiyu Zhang and Huangqiu Zhu. Radial magnetic bearings: An overview. Results in Physics,
7:3756–3766, 2017.

9



Robust Control of Rigid Rotor Active Magnetic Bearing System Based on Signal Compensation Yichen Yao

Figure 6: Response of the original PID controller from 0 to 100 Hz. (a) Displacement response
at sensor A (b) Rotor trajectory at AMB A and AMB B during different rotating speed.
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