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Abstract—To reach a high axial thrust force density with
planar linear motors slotted designs have advantages compared
to the common air-gap winding topologies. Combined with a
permanent magnet excitation compact solutions can be designed,
which exhibit a significant force perpendicular to the direction
of movement. Even with double sided topologies a destabilizing
stiffness remains. This force adds up an extra load on the bearings
and can significantly limit their life-time especially when bush
bearings are applied.
This paper introduces a concept to actively compensate for the
permanent magnet induced bearing load. The potential and limits
are analyzed based on a planar linear actuator with E-shaped
stator cores and a four phase winding. It is outlined how an
integrated active bearing force compensation can be reached for
the complete axial stroke even with simple conventional actuator
layouts. This method can (i) significantly reduce wear and thus
improve lifetime and (ii) reduce the size of the mechanical
bearings.
The system simulation results are validated with measurements
of a prototype system.

I. I NTRODUCTION

Many linear actuators and motors in industrial applications
use an air-gap winding topology with a permanent magnet
(PM) excitation. This reduces forces perpendicular to the
direction of motion, but also limits the thrust force for a
given PM volume. Thus usually a slotted stator topology is
selected when the focus lies on high thrust force density.
With symmetric planar or tubular designs unwanted forces
perpendicular to the direction of movement can be reduced
or ideally canceled. However most linear bearing solutions
exhibit wear and the unbalanced magnetic forces lead to an
excentric position of the mover and hence accelerated wear.
Consequently the increased friction deteriorates efficiency
and bearing lifetime. The effect of asymmetries resulting
from manufacturing tolerances on unbalanced forces have
been analyzed in [1] for rotational machines.
When the reduction of bearing forces of linear motors
is discussed in literature two main force sources can be
distinguished. Both are perpendicular to the direction of
movement. The first is the gravity or load force compensation
and the second the reduction of the unbalanced magnetic
forces. The solutions of gravity compensation range from
passive systems where PMs generate attractive forces
counteracting gravity [2] to actives bearing-less systems[3].
The potential of reducing unbalance forces by design has
been investigated in [4] for a doubly salient PM linear motor.
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Figure 1. (a) Top view and (b) front view of the investigated linear actuator
system with 4 phases labeled with A-D.

Reducing unbalanced magnetic forces perpendicular to the
direction of movement in a given design planar linear actuator
requires an active force compensation control. For core-less
linear motors a method has been proposed in [5] by adding
a second three phase winding system to gain some degree
of freedom to compensate for parasitic forces and torques.
The potential of reducing the undesired bearing forces of
a slotted translational actuation system with a two phase
winding is analyzed in [6]. It shows a significant rise in
bearing lifetime. Still, it is not possible to cancel both bearing
forces independently of the position of the mover. Especially
for a short stroke operation next to the center region of the
stator the force reduction capability is poor.

The objective of this paper is to further extend the reduction
of the unbalanced magnetic forces by applying a 4-phase
winding. This allows canceling both bearing force components



independent of the mover position. Imagine a reciprocating
operation of such a system that could be used for example
to drive a free piston compressor. Thus, for example, a dry
running linear bearing will be available in the system but must
not be exposed to the large unbalanced PM forces resulting
from the magnetic actuator itself. Reducing the forces will
reduce the bearing length and thus the length and mass of the
mover. As a mechanical bearing will be still in place, there
is no need to apply active magnetic bearings or a bearing-
less motor design and the existing magnetic circuit of the
linear actuator can be used to integrate the bearing force
compensation.
The proposed force reduction is analyzed in simulation and
validated with measurements on a test rig.

II. SYSTEM MODEL

All symbols to describe the system model and force com-
pensation strategy are defined in Tab. I.

A. System layout

The system layout is given in Fig. 1. It features a two-sided
planar E-shaped stator with two coils on each side, one for
each phase. The planar mover is mounted to an axle with two
PM on each side. With the mover in exact centered position
the lateral forces disappear. External forces are assumed only
to act along they-axis. The actuator is designed to show
a constant force-to-current ratio in they-direction without
cogging forces for a strokes = ±5mm around the center
position. The main system dimensions are given in Tab. II.

Any eccentricity or wear in thex-direction causes an
imbalance of the attractive forces. Two radial force gaugesare
applied to measure the resulting bearing forces. Additionally
the axial and lateral position of the axis are measured to
determine the axial mover position and its eccentricity and
tilting angle.

B. Wear of linear bush bearings

Compensating for bearing forces of linear drives may come
into focus for different reasons. Especially for integrated sys-
tems requirements like a small system size, minimum weight
and low production costs which result in wide tolerances are
likely to result in the need for low cost dry running bearings.
On the contrary high performance requirements and a high
overall system efficiency may as well result in the need for
dry running bearings made from durable material. In any case,
wear limits the lifetime of the bushings. In this context, the
radial wearw is equivalent to an eccentricity of the mover
in the x-direction. Assuming an actuator with an oscillating
motion along they-axis, a mean mover velocityvm in the y-
direction and a mean bearing pressurepm in the x-direction
can be defined. The differential equation for the wear [6]w
is deduced empirically as

ẇ(t) = K0pm(t)vm, (1)

the wear coefficientK0 has the unitms2/kg. This wear
parameter is a material property of the bushing.

Table I
TABLE OF SYMBOLS.

symbol description

B transformation matrix between bearing

and mover forces

d distance between bearings

db outer diameter of bush bearing

hb length of bush bearing

Fb1, Fb2 bearing forces of bearing 1 or 2

Fx force normal to air gap

Fy thrust force

i,ic coil and phase current vector

iA, iB , iC , iD currents of coilsA to D

i1, i2, i3 phase currents

k∗∗ stiffness in direction∗ = x,y,ϕ

kq stiffness matrix

K0 wear coefficient

Km (pseudo-) inverse ofML

m number of phases

M mass matrix

MC matrix of constant forces

ML matrix of force coefficients proportional

to the current

MQ matrix of force coefficients quadratic

to the current

pm mean bearing pressure

q generalized coordinate vector

Q,QF ,Ql generalized forces on the mover

s stroke in axial direction

t time

Tz torque alongz axis

V phase connection matrix

vm mean bearing velocity

w wear

x mover position normal to air gap

y mover position in axial direction

z coordinate normal tox/y plane

ϕ rotational angle along z-axis

It is assumed that all forces acting on the bearing are negligible
compared to the resulting passive PM forces perpendicular to
the direction of motion. Hence, the mean bearing pressure

pm(t) = f(w(t)) (2)

is a function of the wear (eccentricity) of the mover.
For the symmetrical electromagnetic actuator investigated,
the forces perpendicular to the direction of motion can be
approximated to change proportionally with the eccentricity
or wear. The linear dependency is defined by the dominating
stiffnesskxx. This leads to the expression

pm(t) =
kxxw(t)

2hbdbπ/3
(3)



Table II
MAIN SYSTEM DIMENSIONS.

parameter value unit

width (x direction) 10 mm

length(y direction) 10 mm

height(z direction) 15 mm

mover length 40.5 mm

air gap width 1 mm

total axial stroke 16 mm

distance of bearings 258 mm
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Figure 2. Model of static bearing forces under the influence of eccentricity
and tilting.

for the mean bearing pressure. Both bearing rings have the
same geometric dimensions of lengthhb and outer diameter
db. It is assumed that each ring bears only on one third of its
circumferential surface. Given an inevitable initial eccentricity
of w0, the wear is:

w(t) = w0e
3K0kxxtvm

2dbhbπ . (4)

From (4) follows that for fixed geometrical dimensions of the
bearing rings the stiffnesskxx directly influences the lifetime

tlife =
2dbhbπ ln

(

wmax

w0

)

3K0kxxvm
(5)

of the bearing, which reaches the end of its life whenw reaches
wmax.
Different initial eccentricitiesw10 andw20 of bearings 1 and 2,
respectively, result according to (4) in different eccentricities
w1 andw2. The definition of this wear and the resulting forces
are visualized in Fig. 2.

C. Bearing forces

According to Fig. 2, the equilibrium of the bearing forces
Fb1, Fb2 and the forceFx resulting from eccentricities in the
x-direction

Fb1(y) + Fb2(y) = Fx(y) (6)

and the torque equilibrium

0 = Fb2(y)d+ Tz(y)− Fx(y)

(

d

2
− y

)

(7)

yield

Fb1(y) =
Fx(y)(d+ 2y) + 2Tz(y)

2d
(8)

Fb2(y) =
Fx(y)(d− 2y)− 2Tz(y))

2d
(9)

with the distanced between the two bearings. The torqueTz

and the forceFx both depend ony and act on the center of
the mover (Fig. 2).

III. D YNAMIC SYSTEM MODEL

The generalized forces

QF =









Fx

Fy

Tz









(10)

on the mover with respect toq = [x, y, ϕ]
T result from the

actual bearing forces and the external load. This results inthe
definition of forces in the form

QF = diag(i)MQi + MLi + MC (11)

with diag(i) defining the diagonal matrix of the phase currents.
The term MQ and ML comprise the coefficients quadratic
respectively proportional to the coil currents, and the term
MC the coefficients independent of the currents. The vector
i has the dimensionm × 1, with m denoting the number of
phases.
If linearity with respect to the currents is assumed and all
terms of higher order with respect toi are ignored (11) can
be simplified to

QF = MLi + MC . (12)

This approximation is valid for small changes in the bearing
eccentricities and has been confirmed by simulation and mea-
surements. The nonlinear behavior in the direction of motion
y is covered using a look-up table for this dimension. The
linear model can now be expressed as

Q = MLi = QF − MC . (13)

The entries of the matricesML and MC are calculated in a
2D finite element (FE) analysis of the system. Fig. 3 shows
the simulation result ofMC with respect to the mover position
y.
Assuming current control, a model based on the applied

phase currents can be derived. When compensating for the
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Figure 3. The simulation result of theML-matrix shows the capability to generate bearing (x- andϕ directions) and thrust (y-direction) forces in all positions.
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Figure 4. The simulation of the not energized system with respect to the axial
stroke results is a symmetric stiffness matrix. The two significant entries are
marked with bold red lines.

bearing forces the mover of the linear actuator is intended to
be operated near the initial position

q0 = [x(w10, w20), y, ϕ(w10, w20)]
T , (14)

with w10 andw20 being the bearing position resulting from
the initial eccentricities. The motion along they-axis is valid
for the full stroke as long as the assumption of proportionality
to the current holds true.
Thus, at the pointq0 the equation of motion

Mq̈ = QF − Ql (15)

with the generalized mass matrixM and the generalized load
force Ql(x0, y, ϕ0) = [0, Fly, 0]

T can be developed into a
Taylor series. Assuming that the system is at a stationary point
of operation at the locationq0, the currenti0(q0) is required
to compensate for the load forceFly. If the initial position
cannot be measured, the initial wear can be assumed to zero
with i = 0 and q0 = [x0, y, ϕ0]

T . Ignoring all terms with a
higher order than one results for this point of operation in

Mq̈ = ∂(ML i)
∂q

∣

∣

∣

x0,y,ϕ0,i0
q + ∂MC

∂q

∣

∣

∣

x0,y,ϕ0,i0
q+

+ML (x0, y, ϕ0) i + ∂MC

∂i

∣

∣

x0,y,ϕ0

i.

(16)

The termMC is per definition independent of the currenti,
and the termMLi can be seen as approximately independent
of x andϕ. With the stiffness matrix

kq(y) =
∂MC

∂q

∣

∣

∣

∣

x0,y,ϕ0,i0

(17)

andML0(y) = ML(x0, y, ϕ0) the equation of motion in (16)
can be simplified to

Mq̈ = kq (y)q + ML0 (y) i. (18)

Within the defined stroke ofy = ±5mm the simulated
stiffness matrix of the prototype system

kq(y) =









kxx kxy kxϕ

kyx kyy kyϕ

kϕx kϕy kϕϕ









=

=









38N/mm 0 3yN/rad/mm

0 0 0

3yNm/m/mm 0 1.3Nm/rad









. (19)
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Figure 5. Simulation of the required bearing force compensation current in relation to the systems rated current for a bearing eccentricityw1 = w2 = x and
the axial positiony. The figure shows from left to right the relative compensationcurrents for the coils A to D .

is visualized in Fig. 4. It shows two significant entries in the
main diagonal representing the stiffness inx-direction and the
rotation around thez-axis. Both are independent of the axial
mover position. Most of the coupling terms vanish, except the
coupling between thex and ϕ coordinates. These stiffness
parameters (kxϕ and kϕx) depend approximately linear on
the axial mover positiony and result from the stator slotting.
However with the mechanical limitations of the prototype
system the tilting angleϕ cannot exceed0.45 ◦. Hence all
coupling terms inMC can be ignored.

IV. B EARING FORCE REDUCTION

A. System inversion

From the six degrees of freedom of the rigid body motion
three degrees of freedom are actively controlled: (i) the axial
motion in y-direction, (ii) the force inx-direction and (iii)
the torque inϕ-direction. All other degrees of freedom are
stabilized passively by choosing the shape of the magnetic
circuit or with the mechanical bearings.
According to (12) the bearing forcesFb and the desired axial
forceFy can be written in the form

Fb =









Fb1

Fb2

Fy









= B









Fx

Fy

Tz









= B · ML · i + B · MC (20)

with the transformation matrix

B =









1
2 + y

d
0 1

d

1
2 −

y
d

0 −
1
d

0 1 0









(21)

that transforms the desired bearing (9) and axial forces to the
mover coordinate system.Fb is nonlinear iny becauseB, ML

andMC depend on the positiony.
To cancel or reduce both bearing forces and to achieve the
desired independent motion in axial direction, theML matrix
must fulfill the rank condition

rank(ML) = 3. (22)

This implies a minimum number of three phases in order to
generate the desired force and torque componentsQ and to

fulfill the equation of motion (18). Thus, (13) must to be solved
for i, which results in

i(q) = inv (ML(q))Q, (23)

where inv(ML) is a generalized matrix-inverse ofML.
For the given system the rank condition (22) is valid and thus
the system (23) under-determined. Connecting the four phases
in star reduces the number of degrees of freedom to three.
Applying the phase connection matrix

V =













1 0 0

0 1 0

0 0 1

−1 −1 −1













(24)

on (23) results in the new system

ic(q) = (ML(q)V)
−1 Q = Km(q)Q, (25)

with Km being the inverse of the quadratic matrixMLV and
ic the vector of the three independent phase currents of the
star connected three phase system. The four individual coil
currents

i = Vi c (26)

can be calculated with the connection matrixV.

B. Limits of bearing force reduction

From (25) follows that the compensation current required
rises linear with the eccentricity and varies with the axial
position. With the rated coil current as limit, the relative
amount of bearing force compensation current required can be
calculated for each phase. The simulation result of the bearing
force compensation current in the absence of axial forces is
given with respect to an equal eccentricity in both bearingsand
the axial position in Fig. 5. The simulation shows a moderate
additional current demand as long as the eccentricities are
within the typical range of manufacturing and assembling
tolerances.

V. EXPERIMENTAL VALIDATION

A. Prototype setup

To validate the principle of bearing force reduction the
prototype system in Fig. 7 has been manufactured. Stator and
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Figure 7. Prototype system at the test rig.

mover can be mounted independently from each other on the
test rig to allow for an eccentricity and angular misalignment.
The mover is attached to radial force load cells to measure
the resulting bearing forces. The force compensation control
itself is implemented on a TI microprocessor TMS320f28355
using the graphical software rapid prototyping tool X2CTM [7].
A summary of the used measurement equipment is given in
Tab. III.

Table III
MEASUREMENT EQUIPMENT.

Device Type Manufacturer

Radial force load cell RK2 HBM

Amplifier DAQP-CGB2 Dewetron

Power electronics and lcmEAse10HB10A LCM

data acquisition unit

Axial position sensor AS5311 AMS

Radial position sensor eddy current LCM

B. Control system layout

The control system’s implementation bases on the force
characteristics inversion given in (25). The actual bearing
load forcesFb1 and Fb2 are measured, transformed to the
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Figure 8. The uncompensated and compensated cases are measuredunder
the same axial motion condition.

mover’s coordinate system using the inverse transformation
given in (21). The resulting force inx-direction and thez-
torque serve as feedback for the force compensation control
loop. The force demand iny-direction, Fy, results from a
position controller that performs for demonstration purposes
a sinusoidal motion of the mover. All three force components
are controlled using linear PI controllers. The output of the
force control is transformed to the required phase currentsas
given in (25). An underlying PI current control for all three
phases realizes a system with impressed currents. The control
block diagram is given in Fig. 6.

C. Measurements

The prototype system is mounted to the test rig with an
arbitrary position of the mover within the air-gap. The axial
position of mover is controlled sinusoidally, what is givenin
Fig. 8. Clearly visible is the effect of the stick/slip friction.
Even with the bearing force compensation applied the stick
effect could not be removed. This may result from remaining
bearing forces in the load cells in z-direction. The measured
bearing forces for the compensated and uncompensated cases
are given in Fig. 9 and the respective measured coils current
in Fig. 10. The measurement proves that with the proposed
method the bearing forces can be significantly reduced while
the coil currents remain comparable.
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Figure 10. Measured coil currents of the uncompensated (dashed lines) and
compensated (solid lines) system.

VI. CONCLUSION

The paper demonstrates the feasibility of reducing the
unbalanced magnetic forces in PM linear actuators. The
results are based on analytical and numerical methods and
are validated by measurements. It is demonstrated that the
bearing load can be reduced significantly and thus resulting
in a longer lifetime regardless of the bearing material. While
copper losses hardly increase, friction is eliminated almost
completely. Using a closed loop control with force gauges
allows completely eliminating any bearing forces as long as
the system is operated within its magnetic and electrical limits.

REFERENCES

[1] A. J. P. Ortega and L. Xu, “Investigation of effects of asymmetries
on the performance of permanent magnet synchronous machines,”IEEE
Transactions on Energy Conversion, vol. 32, no. 3, pp. 1002–1011, Sept
2017.

[2] J. J. H. Paulides, J. L. G. Janssen, and E. A. Lomonova, “Bearing lifetime
of linear pm machines,” inEnergy Conversion Congress and Exposition,
2009. ECCE 2009. IEEE, 2009, pp. 1083–1090.

[3] Nan-Chyuan Tsai and Chao-Wen Chiang, “High-frequency linear com-
pressor and lateral position regulation,”Control Systems Technology, IEEE
Transactions on, vol. 20, no. 1, pp. 127–138, 2012.

[4] Shi-Uk Chung, Ji-Won Kim, Byung-Chul Woo, Do-Kwan Hong, Ji-Young
Lee, and Dae-Hyun Koo, “Force ripple and magnetic unbalance reduction
design for doubly salient permanent magnet linear synchronous motor,”
Magnetics, IEEE Transactions on, vol. 47, no. 10, pp. 4207–4210, 2011.

[5] T. T. Nguyen, H. Butler, and M. Lazar, “An analytical commutation law
for parasitic forces and torques compensation in coreless linear motors,”
in 2016 European Control Conference (ECC), 2016, pp. 2386–2391.

[6] F. Poltschak, “Active bearing force reduction in non-commutated linear
actuators,”Proceedings of the Institution of Mechanical Engineers, Part
I: Journal of Systems and Control Engineering, vol. 230, no. 4, pp. 352–
360, 2016.

[7] LCM, “X2C - a free and open source tool for the model-based
development and code generation of real time control algorithms
for micro processor units,” accessed: June 2018. [Online]. Available:
http://www.mechatronic-simulation.org/

http://www.mechatronic-simulation.org/

	Introduction
	System model
	System layout
	Wear of linear bush bearings
	Bearing forces

	Dynamic system model
	Bearing force reduction
	System inversion
	Limits of bearing force reduction

	Experimental validation
	Prototype setup
	Control system layout
	Measurements

	Conclusion
	References

