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Abstract— Basic formulas for determining the magnetic force in 

the air gap of the electromagnet are derived at the beginning of 

this article. The application of these formulas for the 

heteropolar type and homopolar type AMB is described in the 

next sections of this article. The analysis of the magnetic circuit 

of the homopolar AMB with PM and three-phase excitation 

winding is given in Part IV. The formulas and recommendations 

for designing main dimensions of the AMB with PM are given in 

Part V. 

I. INTRODUCTION 

The use of active magnetic bearings in technical practice 
began in the middle of the 20th century when a suitable 
control technology based on power electronic valves and 
microprocessors was available. The advantages of magnetic 
bearings compared to conventional bearings are an ability to 
run by higher speeds, to operate with lower losses, and the 
possibility of their work in vacuum, in explosive atmospheres 
or in high temperature. The issue of the active magnetic 
bearings has become so important that a working group ISO-
TC2-SC4-WG7 called “Vibration of machines with active 
magnetic bearings” was founded. This WG7 prepared for 
publication the standard ISO 14839-1 “Vocabulary” in the 
year 2002. Similarly this WG7 prepared for publication the 
standard ISO 14839-2 “Evaluation of vibration” in the year 
2004 , the standard ISO 14839-3 “Evaluation of stability 
margin” in the year 2006 and the standard ISO 14839-4 
“Technical guidelines” in the year 2012. 

During the use of active magnetic bearings, their different 
configurations appeared. The standard ISO 14839 - 1 - 
Vocabulary - distinguishes the following types of magnetic 
bearings from the point of view of the principle that bearings 
form a bearing force on the rotor: passive magnetic bearings 
(PMB), active magnetic bearings (AMB) and hybrid magnetic 
bearings (HMB). HMBs are a combination of a part of the 
active magnetic bearing and the passive magnetic bearing.  

The standard ISO 14839 - 1 - Vocabulary defines also the 
special HMB type called  Permanent-Magnet-based AMB -  as 
the active magnetic bearing in which bias air gap fluxes are 
established by one or more permanent magnets. This paper 
deals in more detail with the design of the radial Permanent-
Magnet-based AMB. Relations for determining the main 
dimensions of this bearing type are derived in it. 

 

 
Figure 1   Magnetic circuit with two air gaps 

 

II. FORCE AT THE AIR GAP BOUNDARIES 

The closed magnetic circuit in Figure 1 contains two air 
gaps, each with the length xa and area Sa.  

It is known from the theory of magnetism that the 
magnetic energy Wa, stored in the volume of these two air 
gaps is determined by the relationship 

 

𝑊𝑎 =
1

2
∗ 𝐵𝑎 ∗ 𝐻𝑎 ∗ 2 ∗ 𝑆𝑎 ∗ 𝑥𝑎 =

1

𝜇0

∗ 𝐵𝑎
2 ∗ 𝑆𝑎 ∗ 𝑥𝑎 ( 1 ) 

 

where 0 is permeability of vacuum 
 Ba is magnetic flux density in the air gap [T] 
 Sa is the area of one air gap [m

2
] 

 xa is the length of one air gap [m] 
 
The attractive force Fm between the edge regions of the air 

gaps is determined from changing the length of the air gap dxa 

𝑑𝑊𝑎

𝑑𝑥𝑎

= 𝐹𝑚 =
𝐵𝑎

2

𝜇0

∗ 𝑆𝑎 ( 2 ) 

 
The magnetic reluctance of the closed magnetic circuit in 

Figure 1 consists of two parts: the magnetic reluctances of the 
two air gaps 2*Rmx and the reluctance of the remaining 
ferromagnetic part RmFe. It is possible to write 
 
𝑅𝑚𝑐𝑙𝑜𝑠𝑒𝑑 = 2 ∗ 𝑅𝑚𝑥 + 𝑅𝑚𝐹𝑒 =

= 2 ∗
𝑥𝑎

𝜇0 ∗ 𝑆𝑎

+
𝑙𝐹𝑒

𝜇𝐹𝑒 ∗ 𝜇0 ∗ 𝑆𝐹𝑒

=

= 2 ∗
𝑥𝑎

𝜇0 ∗ 𝑆𝑎

(1 +

𝑙𝐹𝑒

2 ∗ 𝑥𝑎

𝜇𝐹𝑒 ∗
𝑆𝐹𝑒

𝑆𝑎

) =

= 2 ∗ 𝑅𝑚𝑥 ∗ 𝑘𝑅𝑚 

( 3 ) 

 
where     kRm is the coefficient of magnetic reluctance 

increase Rmx 

 
The value of the increasing coefficient of magnetic reluctance 
kRm is around 1,1. 

Sa 

Ba 
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𝐹𝑚𝑚𝑓𝑥 = 2 ∗ 𝑅𝑚𝑥 ∗ 𝑘𝑅𝑚 ∗ 𝑎 =

=
2 ∗ 𝑥𝑎

𝜇0 ∗ 𝑆𝑎

∗ 𝑘𝑅𝑚 ∗ 𝐵𝑎 ∗ 𝑆𝑎 =

=
2 ∗ 𝑥𝑎

𝜇0

∗ 𝑘𝑅𝑚 ∗ 𝐵𝑎 

( 4 ) 

 
where  Fmmfx is magneto-motoric force (mmf) 

for closed magnetic circuit 
 
The source of this mmf Fmmfx can be an electric winding 

with 2*N turns and with current I (𝐹𝑚𝑚𝑓𝑥 = 2 ∗ 𝑁 ∗ 𝐼) or a 

permanent magnet with the same mmf. We obtain from Eqs. ( 
2 ) and ( 4 ) 

 

𝐹𝑚 =
𝑆𝑎

𝜇0

∗ (
2 ∗ 𝑁 ∗ 𝐼 ∗ 𝜇0

2 ∗ 𝑥𝑎 ∗ 𝑘𝑅𝑚

)
2

= 𝑆𝑎 ∗ 𝜇0 ∗
𝑁2

𝑘𝑅𝑚
2 ∗ (

𝐼

𝑥𝑎

)
2

 ( 5 ) 

 
The resulting magnetic force Fm is proportional to the 

quadrate of the current I and inversely proportional to the 
quadrate of the air gap size xa and this force is always 
attractive. 

III. TYPES OF RADIAL AMB 

A. Heteropolar Type Radial Active Magnetic Bearing 

In Figure 2 a cross-section of the heteropolar type AMB is 
drawn. It is seen that the four electromagnets are 
symmetrically distributed around the rotor.  

 

 
Figure 2   Assembly of a heteropolar type radial AMB 1-Radial core, 2-
Radial sensor, 3-Radial sensor target, 4-Radial rotor core, 5-Axial centre of 

radial AMB, 6-Radial stator core, 7-shaft 

 
Two opposite located electromagnets form one couple of 

electromagnets. The current of one electromagnet in this 
couple is I1 and the current in opposite located electromagnet 
is I2. If 𝐼1 = 𝐼0 + ∆𝐼 , 𝐼2 = 𝐼0 − ∆𝐼 , 𝑥𝑎1 = 𝑥𝑎0 − ∆𝑥𝑎 , 
𝑥𝑎2 = 𝑥𝑎0 + ∆𝑥𝑎 , then the resulting magnetic force of this 

electromagnet couple Fmres is 

∆𝐹𝑚𝑟𝑒𝑠 = 𝑆𝑎 ∗ 𝜇0 ∗
𝑁2

𝑘𝑅𝑚
2 ∗

∗ ((
𝐼0 + ∆𝐼

𝑥𝑎0 − ∆𝑥𝑎

)
2

− (
𝐼0 − ∆𝐼

𝑥𝑎0 + ∆𝑥𝑎

)
2

)

= 𝑆𝑎 ∗ 𝜇0 ∗
8 ∗ 𝑁2

𝑘𝑅𝑚
2 ∗

𝐼0
2

𝑥𝑎0
2 (

∆𝑥𝑎

𝑥𝑎0

+
∆𝐼

𝐼0

) 

 

( 6 ) 

It is seen that the resulting force of the electromagnet 

couple Fmres is linearly proportional to I and also to xa. Its 
direction can be on both sides. The current I0 is called as the 
bias current. 

 
The polarity of the magnetic poles changes around the 

rotor in the order of N-S-S-N-N-S-S-N. This order removes a 
magnetic coupling between adjacent electromagnets. As a 
result of the above-mentioned pole magnetic polarity order, 
the magnetic flux in the rotor core varies with rotation of the 
rotor and therefore the rotor part has to be laminated. 

The poles of one electromagnet are shifted about each 
other by 45

0
 (see Figure 3) and their resulting force has to be 

reduced due to this shift.  

 
 
 
 
 

 
 
 
 

Figure 3   Cross-section of heteropolar type AMB one electromagnet, DH 
– diameter of the rotor, bP – pole width 

The pole pitch of one pole is 𝜏𝑃 = 𝜋 ∗
𝐷𝐻

8
, the pole cover 

𝑘𝑃 =
𝑏𝑃

𝜏𝑃
⁄ . The area Sa in Eq. ( 6 ) must be replaced by 

𝑆𝑎 =
𝐷𝐻

2
∗ 𝑙𝑃 ∗ ∫ cos 𝜑 ∗ 𝑑𝜑

(1+
𝑘𝑃
2

)∗
𝜋
8

(1−
𝑘𝑃
2

)∗
𝜋
8

=

=
𝐷𝐻

2
∗ 𝑙𝑃

∗ (sin ((1 +
𝑘𝑃

2
) ∗

𝜋

8
)

− (sin (1 −
𝑘𝑃

2
) ∗

𝜋

8
)) 

( 7 ) 

 

Typical values are I = I0,xa= 0, kP = 0,6, kRm = 1,1. 
Then resulting area Sa of one pole can be calculated from ( 7 ) 

𝑆𝑎 =
𝐷𝐻

2
∗ 𝑙𝑃 ∗ (sin 1,3 ∗

𝜋

8
− sin 0,7 ∗

𝜋

8
) =

=
𝐷𝐻

2
∗ 𝑙𝑃 ∗ 0,271 

( 8 ) 

 
The resulting force of one electromagnet couple is 
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∆𝐹𝑚𝑟𝑒𝑠 =
𝐷𝐻

2
∗ 𝑙𝑃 ∗ 0,271 ∗ 𝜇0 ∗

8 ∗ 𝑁2

1, 12

∗
𝐼0

2

𝑥𝑎0
2

(0 + 1)

= 0,718*DH*lP*μ0*
(NI0)2

xa0
2

 

( 9 ) 

 

B. Homopolar Type Radial Active Magnetic Bearing 

In Figure 4 there is seen a cross-section of the homopolar 
type AMB. Its four electromagnets are also symmetrically 
distributed around the rotor, but the electromagnets are located 
in the axial direction. Magnetic polarity of all electromagnets 
on the same side in the axial direction is identical. This has the 
advantage that the magnetic flux in the rotor is practically 
constant and therefore the rotor can be without a lamination.  

 
The two opposite electromagnets again form a couple of 

electromagnets and the same Eq. (6) is correct for the 

determination of the resulting magnetic force Fmres of this 
couple. 

 
Figure 4   Cross-sections of homopolar type radial AMB 

 

The pole pitch of one pole is now 𝜏𝑃 = 𝜋 ∗
𝐷𝐻

4
 and the 

following Eq. (10) allows to calculate the pole area (see Figure 

5)  
 
 
 
 
 
 
 
 
 
 
 

Figure 5   Homopolar type AMB one electromagnet cross-section, DH – rotor 

diameter, bP – pole width 

𝑆𝑎 =
𝐷𝐻

2
∗ 𝑙𝑃 ∗ ∫ cos 𝜑 ∗ 𝑑𝜑

(1−
𝑘𝑃
2

)∗
𝜋
4

−(1−
𝑘𝑃
2

)∗
𝜋
4

=

=
𝐷𝐻

2
∗ 𝑙𝑃

∗ (sin (1 −
𝑘𝑃

2
) ∗

𝜋

4

− sin (− (1 −
𝑘𝑃

2
) ∗

𝜋

4
)) 

( 10 ) 

 Typical values are again I = I0,xa= 0, kP = 0,6, 
kRm = 1,1. Then resulting area Sa of one pole can be calculated 
from Eq. ( 11 ) 

 
The resulting force of one electromagnet couple is 

∆𝐹𝑚𝑟𝑒𝑠 =
𝐷𝐻

2
∗ 𝑙𝑃 ∗ 1,044 ∗ 𝜇0 ∗

8 ∗ 𝑁2

1, 12

∗
𝐼0

2

𝑥𝑎0
2

(0 + 1) = 

= 3,455 ∗ 𝐷𝐻 ∗ 𝑙𝑃 ∗ 𝜇0 ∗
𝑁2𝐼0

2

𝑥𝑎0
2  

( 12 ) 

 

C. Replacement of bias currents by permanent magnets in 

homopolar type radial AMB 

If the radial homopolar type AMB is used, the effect of the 
bias currents 10 can be replaced by permanent magnets placed 
in yokes of electromagnets (see Figure 6).  

The replacement of the bias current I0 by a permanent 
magnet allows to reduce losses in coils of the active magnetic 
bearing to one half or even more. 

 

Figure 6   Cross-sections of homopolar type radial AMB with permanent 
magnets (blue) 

 
A bias current I0 that flows in two magnet windings each 

with N turns produces mmf Fmmf0 that is equal to 2*N*I0 . This 

mmf Fmmf0 is the cause of the magnetic flux 0. The value of 

this magnetic flux 0 can be calculated from Eq. (13) 

 

 

Figure 7   Permanent magnet magnetizing curve 

𝑆𝑎 =
𝐷𝐻

2
∗ 𝑙𝑃 ∗ (sin 0,7 ∗

𝜋

4
− sin (−0,7 ∗

𝜋

4
)) 

=
𝐷𝐻

2
∗ 𝑙𝑃 ∗ 1,044 

( 11 ) 
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0 =
2 ∗ 𝑁 ∗ 𝐼0

2 ∗ 𝑅𝑚𝑥0

=
𝑁 ∗ 𝐼0

𝑅𝑚𝑥0

 ( 13 ) 

 

Simplified magnetizing characteristic shape of a quality 
permanent magnet material is in Figure 7. A prism from the 
permanent magnet material with the length lPM and with the 
cross-section area SPM can be replaced by the mmf FPM that is 

equal to ( 𝐻𝐶 ∗ 𝑙𝑃𝑀𝐵 ) and by the equivalent permanent magnet 

inner reluctance RmPM according to Eq. (14) 

𝑅𝑚𝑃𝑀 =
𝐻𝐶𝐵 ∗ 𝑙𝑃𝑀

𝐵𝑟 ∗ 𝑆𝑃𝑀

=
𝑙𝑃𝑀

𝜇𝑃𝑀 ∗ 𝑆𝑃𝑀

 ( 14 ) 

 

where PM is permeability of the permanent magnet material

  
𝑃𝑀

=
Br

𝐻𝐶𝐵
⁄  

The equivalent diagram of a closed magnetic circuit is 

drawn in Figure 8. The magnetic flux 0 can be calculated on 
the base of this equivalent circuit as shown in Eq. ( 15 ). 

 

Figure 8   Equivalent diagram of closed magnetic circuit with PM 

 

0 =
𝐻𝐶𝐵 ∗ 𝑙𝑃𝑀

𝑅𝑃𝑀 + 2 ∗ 𝑅𝑚𝑥0 ∗ 𝑘𝑅𝑚

 ( 15 ) 

 

D. Replacement of electromagnet windings by threphase 

winding 

The radial AMB contains two couples of electromagnets 

that are situated in axes , . These axes are perpendicular one 

to other. The magnetic forces Fm, Fm of their currents I, 

I represent two components of the resulting magnetic force 

vector ∆𝐹�̂�. If a position of the AMB rotor is in the center of 

the air gap (xa = 0) then currents I, I represent 

components of the current vector ∆�̂� in axes , .  

∆�̂� = ∆𝐼𝛼 + 𝑗 ∗ ∆𝐼𝛽 ( 16 ) 

 
It is known from the theory of electric machines that three 

currents IU, IV, IW in a three-phase winding of an AC machine 

produce one final vector of the mmf �̂�𝑚𝑚𝑓. Therefore, eight 

windings in Figure 3 or in Figure 4 can be replaced by two three-
phase windings in Figure 9. 

 
Figure 9   Cross-sections of homopolar type radial AMB with permanent 

magnet ring (blue) and two three phase windings (red) 

 

Three-phase windings are located in multiple slots on both 

ends of the hollow cylinder. The bias magnetic flux 0 is 
excited by the ring from a material for permanent magnets. 
This flux flows through the surface of a ferromagnetic 
material cylinder, through the air gap, through the surface of 
the rotor shaft and it returns back through the air gap and 
surface of a ferromagnetic material cylinder. 

Slots at both ends of the hollow cylinder increase the air 
gap. This influence is respected in the theory of electric 
machines by the so-called Carter factor kC 

𝑘𝐶 =
𝜏𝑑

𝜏𝑑−𝛾∗𝛿
  where  𝛾 =

(𝑏
𝛿⁄ )

2

5+𝑏
𝛿⁄

 ( 17 ) 

 

where d  is the slot pitch 

  b  is the slot width 

The working flux ∆̂ is excited by the mmf 2*�̂�𝑚𝑚𝑓𝑥 of 

the three phase winding that is located in one end of the 

bearing cylinder. This Fmmfx is result of the current vector ∆�̂� of 

one pole. The working flux ∆̂ flows perpendicularly to the 
rotor through the shaft, through both air gaps, through stator 
teeth and through stator yokes. This working flux does not 
flow through the permanent magnet ring. 

This design allows for better use of the AMB space and to 

separate the path of the bias magnetic flux 0 from the path of 

the working flux ∆̂. 

Following mathematical equations allow to transform two 

current components I, I that flow through windings in 

perpendicular axes ,  to three currents IU, IV, IW that flow 

through three windings in three axes U, V, W. Axes  and U 
have the same position. Axes U, V, W are shifted by 120

0
 each 

to other. 

𝐼𝑈 =
2

3
∗ ∆𝐼𝛼  

𝐼𝑉 = −
1

3
∗ ∆𝐼𝛼 −

1

√3
∗ ∆𝐼𝛽 

𝐼𝑊 = −
1

3
∗ ∆𝐼𝛼 +

1

√3
∗ ∆𝐼𝛽  

  𝐼𝑈 + 𝐼𝑉 + 𝐼𝑊 = 0 

( 18 ) 
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It is known from theory of electric machine that the 
resulted mmf of the three phase winding for one pole is 
possible to calculate from following equation 

𝐹𝑚𝑚𝑓𝑚𝑎𝑥 =
𝑚 ∗ √2

𝜋
∗

𝑁𝑝ℎ𝑎𝑠𝑒 ∗ 𝐼𝑅𝑀𝑆 ∗ 𝑘𝑤

𝑝
 ( 19 ) 

where m  is number of phases 

Nphase  is number of turns in one phase 

IRMS  is RMS value of the current in one phase 

kw  is winding factor 

p  is number of pole pairs 

Needed three phase winding for AMB must have m = 3, 
p = 1 and we estimate its winding factor kW = 0,8 . Then 

𝐹𝑚𝑚𝑓𝑚𝑎𝑥 = 0,764 ∗ 𝑁𝑝ℎ𝑎𝑠𝑒 ∗ 𝐼𝑚𝑎𝑥   ( 20 ) 

 

where 𝐼𝑚𝑎𝑥 = √2 ∗ 𝐼𝑅𝑀𝑆 

 

E. Magnetic force of homopolar type radial AMB with 

permanent magnet ring 

The three-phase winding for one pole creates a sine mmf 
wave along its air gap with the amplitude Fmmfmax. This mmf 

produces a magnetic flux density Bw() in a constant air gap 

x0*kC. Magnetic flux density Bw() is added to the constant 
magnetic flux density B0 from FPM to the resulting magnetic 

flux density Bres(). It is possible to write for one pole 

𝐵𝑟𝑒𝑠+(𝜑) = 𝐵0 ∗ (1 +
𝐵𝑤

𝐵0

∗ 𝑐𝑜𝑠𝜑) ( 21 ) 

 

and for the opposite pole 

𝐵𝑟𝑒𝑠−(𝜑) = 𝐵0 ∗ (1 −
𝐵𝑤

𝐵0

∗ 𝑐𝑜𝑠𝜑) ( 22 ) 

 

The differential of the magnetic force dFm can be 
calculated from Eq. ( 23 ) 

𝑑𝐹𝑚 =
1

2
∗

𝐵𝑟𝑒𝑠
2 (𝜑) ∗ 𝑙𝑃

𝜇0

∗
𝐷𝐻

2
∗ 𝑑𝜑 ( 23 ) 

 

The direction of this force differential is perpendicular to 
the  rotor axis. The resulting force Fm is given by the sum of 
the projections of these force differentials dFm into the axis in 
the direction of maximum mmf Fmmfmax. We obtain for one 
pole 

𝐹𝑚+ =
𝐷𝐻 ∗ 𝑙𝑃

4 ∗ 𝜇0

∗ 𝐵0
2

∗ ∫(1 + k𝐼 ∗ cos 𝜑)2

𝜋
2

−
𝜋
2

∗ cos 𝜑 ∗ 𝑑𝜑 

( 24 ) 

We obtain after mathematical elaboration following result 

𝐹𝑚+ =
𝐷𝐻 ∗ 𝑙𝑃 ∗ 𝜇0

4
∗

(𝑁 ∗ 𝐼0)2

𝑥0
2 ∗ 𝑘𝑅𝑚

2 ∗ 𝑘𝐶
2

∗ (𝜋 ∗ 𝑘𝐼 + 2 +
4 ∗ 𝑘𝐼

2

3
) 

( 25 ) 

 

Similarly we obtain for the opposite pole 

𝐹𝑚− =
𝐷𝐻 ∗ 𝑙

4 ∗ 𝜇0

∗ 𝐵0
2 ∗ ∫(1 − k𝐼 ∗ cos 𝜑)2 ∗ cos 𝜑 𝑑𝜑

𝜋
2

−
𝜋
2

 ( 26 ) 

 

and after mathematical elaboration 

𝐹𝑚− =
𝐷𝐻 ∗ 𝑙𝑃 ∗ 𝜇0

4
∗

(𝑁 ∗ 𝐼0)2

𝑥0
2 ∗ 𝑘𝑅𝑚

2 ∗ 𝑘𝐶
2

∗ (−𝜋 ∗ 𝑘𝐼 + 2 +
4 ∗ 𝑘𝐼

2

3
) 

( 27 ) 

 

The resulting magnetic force of both poles on one end of 
hollow cylinder is equal to 

∆𝐹𝑚𝑟𝑒𝑠ℎ𝑎𝑙𝑓 = 𝐹𝑚+ − 𝐹𝑚− = 

=
𝐷𝐻 ∗ 𝑙𝑃 ∗ 𝜇0

2
∗

(𝑁 ∗ 𝐼0)2

𝑥0
2 ∗ 𝑘𝑅𝑚

2 ∗ 𝑘𝐶
2 ∗ 𝜋 ∗ 𝑘𝐼 

( 28 ) 

 

and finally the resulting magnetic force of both ends of 
hollow cylinder is equal to 

∆𝐹𝑚𝑟𝑒𝑠 = 𝐷𝐻 ∗ 𝑙𝑃 ∗ 𝜇0 ∗
(𝑁 ∗ 𝐼0)2

𝑥0
2 ∗ 𝑘𝑅𝑚

2 ∗ 𝑘𝐶
2 ∗ 𝜋 ∗ 𝑘𝐼 ( 29 ) 

 

F. Magnetic forces comparison of various bearings types 

We compare lengths of different AMB types with the same 
rotor diameter DH, the same width of the air gap x0, the same 
mmf (NI0), the same kRm = 1,1 and the same kI= 1. We obtain 
from Eqs. ( 9 ), ( 12 ) and ( 29 ) 

𝐹𝑚𝑟𝑒𝑠 ∗ 𝑥0
2 ∗ 𝑘𝑅𝑚

2 ∗ 𝑘𝐶
2

𝐷𝐻 ∗ 𝜇0 ∗ (𝑁 ∗ 𝐼0)2
= 2,59 ∗ 𝑙3𝑝ℎ = 0,72 ∗ 𝑙ℎ𝑒𝑡 = 

= 3,46 ∗ 𝑙ℎ𝑜𝑚 

( 30 ) 

The heteropolar type of the AMB requires only one lhet in 
the axial direction. The homopolar type and the three phase 
type AMB require two lhom or l3ph in the axial direction. 
Therefore it will be better to compare the required lengths in 
the axial direction 

Relations ( 30 ) can be rewritten to following relations 



2,59

2
∗ 𝑙3𝑝ℎ𝑎𝑥 = 0,72 ∗ 𝑙ℎ𝑒𝑡 =

3,46

2
∗ 𝑙ℎ𝑜𝑚𝑎𝑥 = 

= 1,3 ∗ 𝑙3𝑝ℎ𝑎𝑥 = 0,72 ∗ 𝑙ℎ𝑒𝑡 = 1,72 ∗ 𝑙ℎ𝑜𝑚𝑎𝑥 

( 31 ) 

We obtain for comparison lengths of two different types  

𝑙3𝑝ℎ𝑎𝑥 =
0,718

1,3
∗ 𝑙ℎ𝑒𝑡𝑎𝑥 = 0,55 ∗ 𝑙ℎ𝑒𝑡𝑎𝑥 ( 32 ) 

𝑙3𝑝ℎ𝑎𝑥 =
1,72

1,3
∗ 𝑙ℎ𝑜𝑚𝑎𝑥 = 1,33 ∗ 𝑙ℎ𝑜𝑚𝑎𝑥 

( 33 ) 

𝑙ℎ𝑜𝑚𝑎𝑥 =
0,718

1,72
∗ 𝑙ℎ𝑒𝑡𝑎𝑥 = 0,42 ∗ 𝑙ℎ𝑒𝑡𝑎𝑥 

( 34 ) 

 

IV. SOLUTION OF MAGNETIC FLUXES DISTRIBUTION IN 

MAGNETIC CIRCUIT OF AMB WITH PERMANENT MAGNETS 

In chapters C and D there is explained that two different 
mmf FmmfPM and Fmmfw excite in magnetic circuit of the AMB 
with permanent magnets the magnetic fluxes that flow through 
different parts of this magnetic circuit. An equivalent circuit of 
the AMB with permanent magnets is drawn in Figure 10.  

 

Figure 10   Equivalent circuit of AMB with permanent magnets 

The equivalent circuit in Figure 10 can be described by the 
following 7 equations: 

𝐹𝑚𝑚𝑓𝑃𝑀 = 𝑅𝑃𝑀 ∗ 1 + 𝑅𝑚𝑥 ∗ (3 + 5) 

𝐹𝑚𝑚𝑓𝑃𝑀 = 𝑅𝑃𝑀 ∗ 2 + 𝑅𝑚𝑥 ∗ (4 + 6) 

3 = 7 + 1 

4 = 2 − 7 

5 = 1 + 7 

6 = 2 − 8 

8 = 3 + 4 

( 35 ) 

 

The system of 7 equations ( 35) has 9 variables: 1, 2, 

3, 4, 5, 6, 7, 8, FmmfPM,. For the unambiguous solution, 
two variables have to be chosen as independent variables. We 

chose FmmfPM and 7. Then the solution of equation system ( 
35) is: 

1 =
𝐹𝑚𝑚𝑓𝑃𝑀 − 2 ∗ (𝑅𝑃𝑀 + 𝑅𝑚𝑥) ∗ 7

𝑅𝑃𝑀 + 2 ∗ 𝑅𝑚𝑥

 

2 =
𝐹𝑚𝑚𝑓𝑃𝑀 + 2 ∗ (𝑅𝑃𝑀 + 𝑅𝑚𝑥) ∗ 7

𝑅𝑃𝑀 + 2 ∗ 𝑅𝑚𝑥

 

3 =
𝐹𝑚𝑚𝑓𝑃𝑀 − 𝑅𝑃𝑀 ∗ 7

𝑅𝑃𝑀 + 2 ∗ 𝑅𝑚𝑥

 

4 =
𝐹𝑚𝑚𝑓𝑃𝑀 + 𝑅𝑃𝑀 ∗ 7

𝑅𝑃𝑀 + 2 ∗ 𝑅𝑚𝑥

 

5 = 3) 

6 = 4 

8 =
2 ∗ 𝐹𝑚𝑚𝑓𝑃𝑀

𝑅𝑃𝑀 + 2 ∗ 𝑅𝑚𝑥

 

( 36 ) 

 

V. DETERMINING THE DIMENSIONS OF THE PERMANENT 

MAGNET RING 

A. Determination  of permanent magnet ring lenght  

When the magnetic flux 7 that is caused by a current in 
the winding is equal to zero then we obtain from ( 36 ) 

3 = 4 = 5 = 6 =
𝐹𝑚𝑚𝑓𝑃𝑀

𝑅𝑃𝑀 + 2 ∗ 𝑅𝑚𝑥0

 ( 37 ) 

 

When magnetic reluctance of the magnetic flux 7 in path of 

the ferromagnetic part of the magnetic circuit and an 

influence of slots is respected, then Eq.  ( 37) changes to Eq. 

( 38 ) 

3 = 4 = 𝟓 = 𝟔 =
𝐻𝐶 ∗ 𝑙𝑃𝑀

𝑅𝑃𝑀 + 2 ∗ 𝑅𝑚𝑥𝟎 ∗ 𝑘𝑅𝑚 ∗ 𝑘𝐶

 ( 38 ) 

 
Magnetic reluctances RPM and Rmx0 are given by 

relationships 

𝑅𝑃𝑀 =
𝑙𝑃𝑀

𝜇𝑃𝑀∗𝑆𝑃𝑀
 𝑅𝑚𝑥0 =

𝑥0

𝜇0∗𝑆𝑥
 ( 39 ) 

 

We obtain from Eqs. ( 38 ) and ( 39 ) 

𝐻𝐶 ∗ 𝑙𝑃𝑀 = 3 ∗ (
𝑙𝑃𝑀

𝜇𝑃𝑀 ∗ 𝑆𝑃𝑀

+ 2 ∗
𝑥0

𝜇0 ∗ 𝑆𝑥

∗ 𝑘𝑅𝑚

∗ 𝑘𝐶) = 

= (
𝑙𝑃𝑀

𝜇𝑃𝑀

∗
3

𝑆𝑃𝑀

+ 2 ∗
𝑥0

𝜇0

∗
3

𝑆𝑥

∗ 𝑘𝑅𝑚 ∗ 𝑘𝐶) = 

=(
𝑙𝑃𝑀

𝜇𝑃𝑀
∗ 𝐵𝑃𝑀 + 2 ∗

𝑥0

𝜇0
∗ 𝐵𝛿0 ∗ 𝑘𝑅𝑚 ∗ 𝑘𝐶) 

( 40 ) 

 

The relationship applies 

0 = 𝐵𝑃𝑀 ∗ 𝑆𝑃𝑀 = 𝐵𝑥0 ∗ 𝑆𝑥 →
𝐵𝑥0

𝐵𝑃𝑀

=
𝑆𝑃𝑀

𝑆𝑥

 ( 41 ) 
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Figure 11   Determination of the magnetic flux density BPM 

 

We can write following relation on the base of Figure 11:  

𝟎

𝑺𝑷𝑴

∗
𝟏

𝑩𝒓

=
𝑩𝑷𝑴

𝑩𝒓

=
𝑹𝑷𝑴

(𝑹𝑷𝑴 + 𝟐 ∗ 𝑹𝒎𝒙𝟎 ∗ 𝒌𝑹𝒎 ∗ 𝒌𝑪)
= 

=
1

1 + 2 ∗
𝑅𝑚𝑥0 ∗ 𝑘𝑅𝑚 ∗ 𝑘𝐶

𝑅𝑃𝑀

=
1

1 + 2 ∗

𝑥0

𝜇0 ∗ 𝑆𝑥

𝑙𝑃𝑀

𝜇𝑃𝑀 ∗ 𝑆𝑃𝑀

∗ 𝑘𝑅𝑚 ∗ 𝑘𝐶

 

( 42 ) 

 

Equation ( 42 ) can be rewritten to 

 
𝐵𝑃𝑀

𝐵𝑟
=

1

1+2∗

𝑥0
𝜇0∗𝑆𝑥

𝑙𝑃𝑀
𝜇𝑃𝑀∗𝑆𝑃𝑀

∗𝑘𝑅𝑚∗𝑘𝐶

= 

=
𝟏

1 + 2 ∗
𝑥0

𝑙𝑃𝑀
∗

𝜇𝑃𝑀

𝜇0
∗

𝑆𝑃𝑀

𝑆𝑥
∗ 𝑘𝑅𝑚 ∗ 𝑘𝐶

=

=
1

1 + 2 ∗
𝑥0

𝑙𝑃𝑀
∗

𝜇𝑃𝑀

𝜇0
∗

𝐵𝛿0

𝐵𝑃𝑀
∗ 𝑘𝑅𝑚 ∗ 𝑘𝐶

 

( 43 ) 

 

Finally we obtain 
𝐵𝑃𝑀

𝐵𝑟

= 1 − 2 ∗
𝑥0

𝑙𝑃𝑀

∗
𝜇𝑃𝑀

𝜇0

∗
𝐵𝛿0

𝐵𝑟

∗ 𝑘𝑅𝑚 ∗ 𝑘𝐶 ( 44 ) 

 

We assume that all values in Eq. ( 44 ) are constant except 

for BPM and lPM variables. If the value of one variable BPM 

or lPM is known, then Eq. ( 44 ) allows to calculate the value 

of the second variable. As can be seen from Figure 11 it must 

be BPM value less than the Br value. Typical values of 

constants in Eq. ( 44 ) are: 

B0 = 0,5 T, x0 = 0,5 mm, 0 = 4*10
-7  

H/m, kRm = 1,1, 

kC = 1,4. 

 
The permanent magnet material Ferroxdure FXD 400 has  

Br = 0,41 T, BHC = 2,65*10
5
 A/m. Then 

𝜇𝑃𝑀 =
𝐵𝑟

𝐻𝐵 𝑐
⁄ = 0,41

2,65 ∗ 105⁄ = 1,55 ∗ 10−6[𝐻𝑚−1]  

The permanent magnet material Rare Earth RES 305 has  

Br = 1,15 T, Hc = 8, 5*10
5
 A/m. Then  

𝜇𝑃𝑀 =
𝐵𝑟

𝐻𝑐
⁄ = 1,15

8,5 ∗ 105⁄ = 1,35 ∗ 10−6[𝐻𝑚−1]  

 
The curves BPM / Br = f(lPM) for typical values of constants 

in Eq. ( 44 ) and for two different materials of permanent 
magnets were calculated and they are drawn in Figure 12. The 
red curve is for a the material RareEarth RES 400 and blue 
curve is for the material Ferroxdure FXD400 . 

 
Figure 12   Functions BPM / Br = f(lPM) for typical values of constants in 

Eq. ( 44 ) and for a RareEarth RES 400 (red) or Ferroxdure FXD400 (blue) 

 

A recommended value of the ratio BPM / Br is about 0,6. The 

length of the Ferroxdure permanent magnet ring was 

determined from Figure 12 to 5,8 mm and from RareEarth 

was determined to 1.8 mm. 

B. Determination of PM ring diameters 

 
Figure 13   Longitudinal section of AMB with permanent magnet ring 

It is assumed that the rotor diameter DH of the shaft on 
which the radial magnetic bearing will be located is known 
and that the length of one air gap lP is determined from Eq. ( 
28 ) for the known values (NI)0, x0,kRm, kC, kI. It is also 
assumed that the inner diameter Din of the PM ring is known. 

=BPM*SPM= 

=Bx0*Sx 

=0 

lPM 

N S 

PM 

windings 

lp 

D
o

u
t 

D
in

 

D
H

 x 0
 

hPM 



It must be determined with respect to the space required for 
the three-phase winding. 

The following Eq. ( 45 ) applies for the PM ring 

𝑆𝑃𝑀 =
𝜋

4
∗ (𝐷𝑜𝑢𝑡

2 − 𝐷𝑖𝑛
2 )

= 𝜋 ∗ ℎ𝑃𝑀 ∗ (𝐷𝑖𝑛 + ℎ𝑃𝑀) 
( 45 ) 

where ℎ𝑃𝑀 =
𝐷𝑜𝑢𝑡−𝐷𝑖𝑛

2
 

 

The following Eq. ( 46 ) applies for the air gap 

𝑆𝑥 = 𝜋 ∗ 𝐷𝐻 ∗ 𝑙𝑃 ∗ 𝑘𝑃 ( 46 ) 

 

We obtain from Eq. ( 45 ), ( 46 ) and ( 41 ) 

 
𝑆𝑃𝑀

𝑆𝑥

=
𝜋 ∗ ℎ𝑃𝑀 ∗ (𝐷𝑖𝑛 + ℎ𝑃𝑀)

𝜋 ∗ 𝐷𝐻 ∗ 𝑙𝑃 ∗ 𝑘𝑃

=
𝐵𝑥0

𝐵𝑃𝑀

 ( 47 ) 

 

ℎ𝑃𝑀
2 + 𝐷𝑖𝑛 ∗ ℎ𝑃𝑀 − 𝐷𝐻 ∗ 𝑙𝑝 ∗ 𝑘𝑝 ∗

𝐵𝑥0

𝐵𝑃𝑀

= 0 ( 48 ) 

 

and finally 

ℎ𝑃𝑀 = −
𝐷𝑖𝑛

2
+ √(

𝐷𝑖𝑛

2
)

2

+ 𝐷𝐻 ∗ 𝑙𝑝 ∗ 𝑘𝑝 ∗
𝐵𝑥0

𝐵𝑃𝑀

 ( 49 ) 

We obtain from Eq. ( 49 ) as an example for Din = 165 mm, 

Din =165 mm, lp = 20 mm, kp = 0,6, Bx0= 0,5 T, Br = 0,41 T, 

Bx0/ BPM = Bx0/ Br * Br/ BPM =0,5 / 0,41 / 0,6 = 2,03 

ℎ𝑃𝑀 = −
165

2
+ √(

165

2
)

2

+ 80 ∗ 20 ∗ 0,6 ∗ 2,03 = 

= 11,08   𝑚𝑚 

( 50 ) 

In Figure 14, there is a view of the AMB with permanent 

magnets in the CTU in Prague – FEE laboratory. The ring 

from a material for permanent magnet is replaced by prisms 

with required thick, which are spaced in place for the ring.  

 
Figure 14   View on opened AMB with PM in the CTU in Prague – FEE 

laboratory 

 

VI. CONCLUSION 

Active magnetic bearings find use in rotary machines for 
some of their advantages. The heteropolar AMB are most 
frequently used in industrial applications and therefore the 
greatest attention is paid to them in the professional literature. 
On the contrary, about the homopolar AMBs with permanent 
magnets can find in the literature only a description of the 
principle of their work, but information about their design can 
not easily be found.  

This paper deals with the analysis of the magnetic circuit 
of the homopolar AMB with permanent magnets and, on the 
basis of this analysis, describes the necessary equations for 
determining the main dimensions of its permanent magnets. 

The described design method is one of the results of 
doctoral thesis T. Kupka's dissertation [6].  
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