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Abstract—Analytic models for solid cylindrical electromagnetic 

actuators are extended to include geometries with a center hole, 

the configuration typical of thrust-type active magnetic bearings. 

These models describe the relationship between perturbation to 

coil current and the variations in mechanical force that result. 

The models are explicitly dependent on geometric and material 

properties of the actuator and include the effects of eddy currents, 

which determine the actuator bandwidth. These models are 

verified by comparison to high-fidelity finite element results. 

I. INTRODUCTION 

 
Active magnetic bearings (AMB) require little 

maintenance, are more efficient than traditional mechanical 
bearings, and may be configured to meet a wide range of design 
constraints. For these reasons magnetic bearings are frequently 
incorporated into pumps and compressors used in pipelines, 
refineries, and even subsea production applications. Radial 
magnetic bearings are typically laminated to reduce eddy 
currents and extend the bandwidth of force in response to 
changes in current. However, due to manufacturing and 
material constraints, magnetic thrust bearings are usually solid. 
As a result eddy currents typically have a profound effect on 
their dynamic response. Zhu et al. developed an analytic model 
for solid cylindrical magnetic actuators, including eddy current 
effects, that defines the dynamic relationship between current 
and mechanical force [1], [2]. This model was modified and 
extended in a simplified transfer function form by Sun et al. for 
solid cylindrical magnetic actuators with a center hole, i.e. - the 
geometry of magnetic thrust bearings, [3]. However, the full 
analytic model for cylindrical geometries developed by Zhu has 
not been previously extended for magnetic thrust bearing 
geometries. Here, the full analytic model developed by Zhu et 
al. is extended to allow for geometries with a center hole. The 
analytic model for thrust bearing geometries is then 
approximated in a transfer function form suitable for control 
design. The frequency responses for the full order and 
approximate models are compared to that of a finite element 
model for several bearing geometries. These results are also 
compared to the approximate model developed by Sun et al. 

II. ANALYTICAL MODEL OF A CONVENTIONAL THRUST 

AMB 

Zhu et al. developed an extensive 2-D magnetic circuit 

model of non-laminated axisymmetric actuators based on the 

ideas of skin effect and effective reluctance [1], [2]. Eddy 

current-induced skin effect describes the tendency for 

electromagnetic waves to travel near the surface of conductors. 

The depth at which the flux amplitude is reduced by 1/e ≈ 1/3 

is the skin depth and is given by δ = 1/√fµrµ0σ [1], [4], where 

µr is the magnetic permeability of the material relative to that 

of free space, µ0, and σ is the conductance of the material. 

Neglecting the effects of eddy currents, the reluctance along a 

solid uniform material of length l and cross-sectional area A, 

is given by 

 𝑅 =
𝑙

𝜇𝑟𝜇𝑜𝐴
 

However, in a solid magnetic actuator with eddy current 

effects, the cross-sectional area for varying flux is effectively 

reduced with increasing frequency, consistent with the skin 

effect, giving rise to the idea of effective permeability and 

effective reluctance [1], [2]. Using this idea Zhu et al. 

developed a magnetic circuit model with reluctance elements, 

dependent on the frequency of the current input that accurately 

captured the effects of eddy currents with a simple magnetic 

circuit model. The result of this work was a simple fractional 

order transfer function model of flux across the air gap (φg) 

with respect to perturbation current (ip) of the form: 


𝜙𝑔(𝑠)

𝑖𝑝(𝑠)
=

𝑁

𝑐√𝑠+𝑅𝑜 

where the denominator represents the effective reluctance of 

the circuit with static coefficient R0 and dynamic coefficient c 

[1], [2]. Zhu et al. examined the dynamics of axisymmetric 

actuators without a center hole. Fig. 1 shows how the 

axisymmetric geometry may be defined using polar 

coordinates. The geometry may be divided into six regions as 

shown in Fig. 3. Reluctance models for each region were 

derived in [1], [2]. Only Regions 1 and 6 are effected by the 

presence of a center hole, i.e. r0 > 0, so the reluctance models 

for these regions only, are rederived below for r0 > 0. 

Reluctance networks used to derive the other reluctance 

models are described in detail in [2]. Early models of solid 

magnetic actuators assumed that flux density in the air gap was 

homogeneous. However, due to eddy current effects, the flux 

density in solid actuators varies across the air gap. For an 

axisymmetric geometry with cross section shown in Fig. 1 

(axis of symmetry is the z-axis) flux density varies with radial 

position along the air gap. Fig. 2 shows flux density in the air 

gap predicted by finite element analysis (FEA), for an example  



 
Figure 1. Parameters describing axisymmetric geometry of a magnetic thrust 

bearing. 

 

 
Figure 2. Air gap flux density varies with radial position. 

 

actuator, beginning at the inner radius, r0 = 51.7mm and 

moving towards the outer radius, r3 = 101.3mm. Moving 

towards the outer radius across the inner pole, flux density 

increases. Flux fringing and leakage across the coil were 

neglected in this analysis so the flux density in the center hole, 

r < r0, and coil groove, r1 < r < r2, is zero. Moving out across 

the outer pole, r2 < r < r3, flux density decreases. This variation 

of flux density across the pole face is an important aspect of 

actuator behavior that must be captured in high fidelity models. 

A. Development of Analytic Model 

Following the procedure used by Zhu [1], [2], the effective 

reluctance for Region 1 with a center hole is developed first. 

Based on the reluctance network and circuit theory, the 

magnetomotive force at a radial position, r, in the flotor, FMfl(r), 

is given by the total magnetomotive force, FM, minus the loss 

in magnetomotive force along the stator such that 

 𝐹𝑀𝑓𝑙(𝑟) = 𝐹𝑀 − 𝐹𝑀𝑠𝑡(𝑟) 

where FM is the magnetomotive force equal to the number of 

coil turns, N, times the coil current, i. From the reluctance 

network for Region 1, Zhu et al. developed the following 

ordinary differential equation [2]: 


𝑑2𝐹𝑀𝑠𝑡(𝑟)

𝑑𝑟2 +
1

𝑟

𝑑𝐹𝑀𝑠𝑡(𝑟)

𝑑𝑟
− 𝛼1

2𝐹𝑀𝑠𝑡(𝑟) = −
𝛼1

2

2
𝐹𝑀 

where 𝛼 = √𝑠𝜎𝜇𝑟𝜇0and𝛼1 = √
2𝛼

𝜇𝑟𝑙𝑔
 

(4) is a modified Bessel equation with the complete solution 

shown in (6). 

 𝐹𝑀𝑠𝑡(𝑟) =
𝐹𝑀

2
+ 𝐶1𝐼0(𝛼1𝑟) + 𝐶2𝐾0(𝛼1𝑟) 

where In(·) is the nth-order modified Bessel function of the first 

kind and Kn(·) is the nth-order modified Bessel function of the 

second kind. Substitution of (3) into (6) yields 

 𝐹𝑀𝑓𝑙(𝑟) =
𝐹𝑀

2
− 𝐶1𝐼0(𝛼1𝑟) − 𝐶2𝐾0(𝛼1𝑟) 

 
 
Figure 3. Axisymmetric geometry divided into six regions, each with an 

effective reluctance dependent on frequency. 

 

For r0 > 0, i.e. a geometry with a center hole, FMst(r1) = FM 

and 
𝑑𝐹𝑀𝑠𝑡

𝑑𝑟
|  𝑟=𝑟0

= 0, C1 and C2 are given as follows: 

 𝐶1 =
1

2

𝐹𝑀𝐾1(𝛼1𝑟0)

𝐼1(𝛼1𝑟0)𝐾0(𝛼1𝑟1)+𝐼0(𝛼1𝑟1)𝐾1(𝛼1𝑟0)
, and

 𝐶2 =
1

2

𝐹𝑀𝐼1(𝛼1𝑟0)

𝐼1(𝛼1𝑟0)𝐾0(𝛼1𝑟1)+𝐼0(𝛼1𝑟1)𝐾1(𝛼1𝑟0)
 

Substituting (8) into (6) and (7) results in two equations for 

magnetomotive force at the surface of the stator, FMst, and 

flotor,FMfl, in the air gap as a function of radial position r: 

𝐹𝑀𝑠𝑡(𝑟) =
𝐹𝑀

2
[1 +

𝐼0(𝛼1𝑟)𝐾1(𝛼1𝑟0)

𝐼1(𝛼1𝑟0)𝐾0(𝛼1𝑟1)+𝐼0(𝛼1𝑟1)𝐾1(𝛼1𝑟0)
+

𝐾0(𝛼1𝑟)𝐼1(𝛼1𝑟0)

𝐼1(𝛼1𝑟0)𝐾0(𝛼11𝑟1)+𝐼0(𝛼1𝑟1)𝐾1(𝛼1𝑟0)
] and 

 𝐹𝑀𝑓𝑙(𝑟) =
𝐹𝑀

2
[1 −

𝐼0(𝛼1𝑟)𝐾1(𝛼1𝑟0)

𝐼1(𝛼1𝑟0)𝐾0(𝛼1𝑟1)+𝐼0(𝛼1𝑟1)𝐾1(𝛼1𝑟0)
−

𝐾0(𝛼1𝑟)𝐼1(𝛼1𝑟0)

𝐼1(𝛼1𝑟0)𝐾0(𝛼1𝑟1)+𝐼0(𝛼1𝑟1)𝐾1(𝛼1𝑟0)
] 

The flux density in the air gap, 

 𝐵𝑔(𝑟) =
𝜇0

𝑙𝑔
(𝐹𝑀𝑠𝑡(𝑟) − 𝐹𝑀𝑓𝑙(𝑟)) 

 

[2], may then be evaluated as: 

 𝐵𝑔(𝑟) =
𝜇0𝐹𝑀

𝑙𝑔
(

𝐾1(𝛼1𝑟0)𝐼0(𝛼1𝑟)+𝐼1(𝛼1𝑟0)𝐾0(𝛼1𝑟)

𝐼1(𝛼1𝑟0)𝐾0(𝛼1𝑟1)+𝐼0(𝛼1𝑟1)𝐾1(𝛼1𝑟0)
) 

Solving for the total flux in the air gap for Region 1 is achieved 

by integrating Bg(r) from r0 to r1: 



 𝜙𝑔 = ∫ 𝐵𝑔(𝑟) ∗ 2𝜋𝑟 𝑑𝑟
𝑟1

𝑟0
=

2𝜋𝜇0𝑟1𝐹𝑀

𝑙𝑔𝛼1
(

𝐼1(𝛼1𝑟1)𝐾1(𝛼1𝑟0)−𝐼1(𝛼1𝑟0)𝐾1(𝛼1𝑟1)

𝐼1(𝛼1𝑟0)𝐾0(𝛼1𝑟1)+𝐼0(𝛼1𝑟1)𝐾1(𝛼1𝑟0)
) 

Utilizing the relationship between magnetic flux in the air gap, 

φg, magnetomotive force, FM, and reluctance, R, given by: 

 𝜙𝑔 =
𝐹𝑀

𝑅
 

the effective reluctance for Region 1 can be expressed as: 

 𝑅1(𝑠) =
𝑙𝑔𝛼1

2𝜋𝜇0𝑟1
(

𝐼1(𝛼1𝑟0)𝐾0(𝛼1𝑟1)+𝐼0(𝛼1𝑟1)𝐾1(𝛼1𝑟0)

𝐼1(𝛼1𝑟1)𝐾1(𝛼1𝑟0)−𝐼1(𝛼1𝑟0)𝐾1(𝛼1𝑟1)
) 

For the static case, the reluctance should be determined by the 

air gap alone as eddy currents are absent. Indeed, the result 

obtained by taking the limit of R1(s) as the complex variable s 

approaches zero yields 

 𝑅1
0 = lim

𝑠→0
𝑅1(𝑠) =

𝑙𝑔

𝜋𝜇0(𝑟1
2−𝑟0

2)
 

which is the expected result. In addition, for r0 = 0, the solution 

matches that obtained by Zhu et al. for the static reluctance of 

Region 1 [1]. The development of the effective reluctance 

model for Region 6 with r0 > 0 is slightly different than that for 

Region 1. However, it is similar to the development of the 

effective reluctance of Region 4 described by Zhu et al. [2]. 

For Region 6, the reluctance network is formed by a series of 

parallel reluctances described by the ordinary differential 

equation 


𝑑2𝐻𝑧

𝑑𝑟2 +
1

𝑟

𝑑𝐻𝑧

𝑑𝑟
− 𝛼2𝐻𝑧 = 0 

the solution to which is given by: 

 𝐻𝑧(𝑟) = 𝐶1𝐼0(𝛼𝑟) + 𝐶2𝐾0(𝛼𝑟) 

[2]. For Region 6 with r0 > 0, the boundary conditions are 

Hz(r1) = Hsf and dHz(r)/dr |r=r0 = 0, and the constants are: 

 𝐶1 =
𝐻𝑠𝑓𝐾1(𝛼𝑟0)

𝐼1(𝛼𝑟0)𝐾0(𝛼𝑟1)+𝐼0(𝛼𝑟1)𝐾1(𝛼𝑟0)
, and

 𝐶2 =
𝐻𝑠𝑓𝐼1(𝛼𝑟0)

𝐼1(𝛼𝑟0)𝐾0(𝛼𝑟1)+𝐼0(𝛼𝑟1)𝐾1(𝛼𝑟0)
 

where Hsf is the magnetic field strength at the actuator surface. 

It then follows that 

 𝐻𝑧(𝑟) = 𝐻𝑠𝑓
𝐼1(𝛼𝑟0)𝐾0(𝛼𝑟)+𝐾1(𝛼𝑟0)𝐼0(𝛼𝑟)

𝐼0(𝛼𝑟1)𝐾1(𝛼𝑟0)+𝐾0(𝛼𝑟1)𝐼1(𝛼𝑟0)
and 

 𝜇𝑒𝑓𝑓(𝑟) = 𝜇𝑟𝜇0
𝐼1(𝛼𝑟0)𝐾0(𝛼𝑟)+𝐾1(𝛼𝑟0)𝐼0(𝛼𝑟)

𝐼0(𝛼𝑟1)𝐾1(𝛼𝑟0)+𝐾0(𝛼𝑟1)𝐼1(𝛼𝑟0)
 

Effective reluctance for Region 6 is then 

𝑅6(𝑠) =
𝑑2

∫ 𝜇𝑒𝑓𝑓(𝑟) ∗ 2𝜋𝑟𝑑𝑟
𝑟1

𝑟0

 

=
𝑑2𝛼

2𝜋𝜇0𝜇𝑟𝑟1

𝐼0(𝛼𝑟1)𝐾1(𝛼𝑟0)+𝐼1(𝛼𝑟0)𝐾0(𝛼𝑟1)

𝐼1(𝛼𝑟1)𝐾1(𝛼𝑟0)−𝐼1(𝛼𝑟0)𝐾1(𝛼𝑟1)
 

with static reluctance given by 

 𝑅6
0 = lim

𝑠→0
𝑅6(𝑠) =

𝑑2

𝜋𝜇𝑟𝜇0(𝑟1
2−𝑟0

2)
 

which, as expected, matches Zhu’s result for r0 = 0 [1]. 

B. Simplified Model of Solid Thrust AMB 

The transcendental functions in the analytic model 

presented above are not suitable for control design. Therefore, 

a simplified analytic model for R1(s) and R6(s) with rational 

functions, is developed in this section. Taylor series and ad hoc 

approximations of Ri(s) were compared to determine which 

method better represents the full reluctance model. The Taylor 

series (TS) and ad hoc (AH) reluctance approximations for 

Regions 1 and 6 with r0 > 0 are given by 

𝑅1
𝑇𝑆(𝑠) =

𝑙𝑔

𝜋𝜇0(𝑟1
2 − 𝑟0

2)

+
2𝑟0

4𝑙𝑜𝑔
𝑟1
𝑟0

+
3
2

𝑟0
4 − 2𝑟1

2𝑟0
2 +

1
2

𝑟1
4

2𝜋(𝑟1
2 − 𝑟0

2)2 √
𝜎

𝜇𝑟𝜇0
√𝑠 

𝑅1
𝐴𝐻(𝑠) =

𝑙𝑔

𝜋𝜇0(𝑟1
2 − 𝑟0

2)
+

√2

2𝜋𝑟1

√
𝜎𝑔2

𝜇𝑟𝜇0
3

4

√𝑠
4

 

𝑅6
𝑇𝑆(𝑠) =

𝑑2

𝜋𝜇𝑟𝜇0(𝑟1
2−𝑟0

2)
+

𝑑2

2𝜋

2𝑟0
4𝑙𝑜𝑔

𝑟0
𝑟1

+
3

2
𝑟0

4−𝑟0
2𝑟1

2+
1

2
𝑟1

4

(𝑟1
2−𝑟0

2)2 𝜎𝑠, and 

 

 𝑅6
𝐴𝐻(𝑠) =

𝑑2

𝜋𝜇𝑟𝜇0(𝑟1
2−𝑟0

2)
+

𝑑2

2𝜋𝑟1
√

𝜎

𝜇𝑟𝜇0
√𝑠 

Ad hoc and Taylor series approximations were compared 

to the full analytic model in reference [5] where it was found 

that the Taylor series matched the magnitude and phase of the 

full model more closely for Region 1. For Region 6, the ad hoc 

approximation was found to match the full analytic model 

better in both magnitude and phase [5]. Effective reluctances 

for Regions 1 and 6 are shown in Table I along with the 

proposed approximations. For Regions 2 through 5, the 

reluctance models that will be used for analysis here are the 

same as those found in [1], [2] and are included in Table II for 

completeness. 

 
Table I. Effective reluctances, Ri(s), for Regions 1 and 6 

 
 

 

 
 

 

 



Table II. Effective reluctances, Ri(s), for Regions 2 through 5 of axisymmetric 
geometry [1]. 

 

 

C. Comparison with Finite Element Analysis 

To verify the accuracy of the analytic models developed in the 

previous section, several test cases were chosen for 

examination. The first test case is similar to an existing thrust 

bearing on a compressor surge test rig developed at the 

University of Virginia [6], [7]. Several other test cases were 

derived by modifying the geometric properties of this bearing 

as summarized in Table III. FEA was performed using Finite 

Element Method Magnetics (FEMM) [8] over a range of 

current excitation frequencies from static to 400Hz. Flux 

magnitude and phase were plotted to determine the minimal 

mesh resolutions required (Fig. 4). Flux magnitudes were 

similar for each of the mesh resolutions tested using FEMM 

(Fig. 4). However, for the lowest resolution mesh, the phase 

diverged from that of the finer meshes for frequencies above 

100Hz (Fig. 4). At higher frequencies the eddy-current induced 

skin effect restricts the flux path to the surface region adjacent 

to the coil [1]. With the flux concentrated in fewer elements 

near the surface, and a steep flux gradient at the edge of this 

region, a finer mesh resolution is required in order to obtain 

accurate results. The highest mesh resolution (6 million nodes 

for Case 1) was used for all subsequent finite element analysis 

performed using FEMM. Flux magnitudes and phase for 

several geometries were predicted using the full model 

presented above as well as the approximate analytic model 

developed from it. These were compared to predictions from 

FEA that excluded flux leakage and fringing (Figs. 5 - 7). Flux 

magnitudes for each model were normalized to the static 

results of the FEA model: 

 𝑀𝑛𝑜𝑟𝑚 = 20𝑙𝑜𝑔 |
𝐺𝑖(𝑗𝜔)

𝐺0(0)
| 

 
Figure 4. 2-D finite element modeling shows the flux magnitude and phase for 
three mesh resolutions. 

 

where Mnorm is the normalized flux magnitude in dB, Gi(jω) 

represents the model data being normalized, and G0(0) is the 

static response of the FEA model without leakage or fringing. 

The full analytic model agreed closely with the FEA model. 

Furthermore, in most cases the approximate model’s frequency 

response closely matched the FEA results. The approximate 

models yielded similar results with the maximum difference in 

magnitude of 0.230dB and a maximum difference in phase of 

0.539 deg for all six cases. 

 
Table III. Maximum multiplicative error (ME) of flux magnitude computed 

using the model derived above and the model from Sun et al., relative to FEA 
without leakage and fringing. 

  Case  

 Full Model 

Max ME (%)  

 Approximate 

Max ME (%)  

 Sun et al. 

Max ME (%) 

1  27.5 7.44 7.73 

2  21.9 4.15 4.32 

3  21.9 9.02 9.3 

4  45.9 10.6 10.9 

5  23.8 6.38 6.29 

 

Table IV shows the maximum multiplicative error (ME), 

 𝑀𝐸(𝑓) =
|𝐺𝑓(𝑥)(𝑓)−𝐺𝐹𝐸𝐴(𝑓)|

|𝐺𝐹𝐸𝐴(0)|
100% 

relative to FEA for the approximate model developed here, and 

the Sun et al. model. The maximum MEs for the two 

approximate models were similar reflecting the close 

agreement in frequency response predicted by each 

approximation. The greatest ME was 10.6% for the 

approximation developed above and 10.9% for the 



approximation reported by Sun et al.. Both of these were 

observed for case 4 and both occurred at low frequency, 1.5Hz. 

Table V shows the maximum phase error (PE), 

 𝑃𝐸(𝑓) = ∠𝐺𝑓(𝑥)(𝑓) − ∠𝐺𝐹𝐸𝐴(𝑓) 

for both approximations. Both approximations resulted in very 

small phase error with the largest errors observed for Case 4 

which are less than 2 deg. Larger errors observed for Case 4 

are also seen in for the full analytic model and are likely due 

to the inability of the full analytic model to capture the eddy 

current effects of a geometry with a deep coil groove, rather 

than a divergence of the full and approximate analytic models 

for this geometry. Frequency response plots of three 

representative cases are included in Figures 5 through 7. For 

Case 2 the approximate model performed best in capturing the 

FEA behavior as evidenced by the small error in flux 

magnitude. For Case 4, the approximate model had the largest 

error in flux magnitude that was seen in our investigation. The 

full model developed herein performed very well for all 

geometries. In all cases examined, the differences in results 

between our approximate model and that developed by Sun et 

al. was negligible in both magnitude and phase, suggesting that 

both approximate models are equally valid. The Sun 

approximate model has the advantage of a simpler analytic 

expression. 

 
Table IV. Maximum absolute value of phase error (PE) of flux computed using 

the model derived above and the model from Sun et al., relative to FEA without 
leakage and fringing. 

  Case  
 Full Model 

Max PE (deg)  
 Approximate 
Max PE (deg)  

 Sun et al. 
Max PE (deg) 

1  3.65 1.64 1.42 

2  3.67 0.967 0.9 

3  2.78 1.73 1.57 

4  5.22 1.98 1.84 

5  3.69 1.56 1.47 

6  3.53 1.52 1.27 

 

 
Table V. -3dB and -15 deg bandwidths computed for FEA, full and 

approximate models. 

  
Case  

  FEA 

-3 dB 
(Hz)   

 Full 

Model 

-3 dB 
(Hz)  

 

Approx. 

-3 dB 
(Hz)  

 FEA 

-15 deg 
(Hz)  

 Full 

Model 

-15 deg 
(Hz)  

 

Approx. 

-15 deg 
(Hz) 

1  15 26.6 10.8 8.12 14.4 9.18 

2  44.6 79.8 36.8 31.4 57.7 33.8 

3  10.8 16.9 7.3 5.41 8.06 6.28 

4  8.77 20.9 5.59 3.93 8.82 4.77 

5  37.8 68.4 28.4 22.5 40.7 25.3 

6  7.27 12.6 5.06 3.51 6.06 3.92 

 

III. DISCUSSION 

The transfer function model developed by Sun et al. [3] 

was developed by extending the simplified model developed 

by Zhu et al. [1], [2] for an inner radius greater than zero. In 

the process, the magnetic circuit model developed was 

 

 

 
Figure 5. Case 2 (1mm air gap): Normalized flux magnitude and phase 

predicted by FEA model without flux leakage or fringing (FEA), full analytic 
model, and simplified analytic model (Approx.). 

 

 

 

 
Figure 6. Case 4 (deep coil groove): Normalized flux magnitude and phase 

predicted by FEA model without flux leakage or fringing (FEA), full analytic 
model, and simplified analytic model (Approx.). 



 

 

 
Figure 7. Case 6 (small inner radius): Normalized flux magnitude and phase 

predicted by FEA model without flux leakage or fringing (FEA), full analytic 

model, and simplified analytic model (Approx.). 

 

modified from the original form and the full analytic model 

was not considered. In this work the development of analytic 

models is carried out by extending the full analytic model for 

solid cylindrical electromagnetic actuators to included cases 

where the inner radius is greater than zero using the same 

magnetic circuit model. With the full analytic model defined 

for this new geometry, a simplified model was developed 

using Taylor series and ad hoc approximations. By 

comparison to FEA results it is shown that both the full 

model and the approximate model provide useful predictions 

of actuator frequency response. The approximate model, 

however, is substantially better than the full model in 

predicting actuator bandwidth. Bandwidths predicted using 

the approximate model were similar to those predicted by the 

Sun model. 

IV. CONCLUSIONS 

 Analytic models for solid thrust AMBs were developed by 
extending the work of Zhu et al. on modeling of solid 
cylindrical electromagnetic actuators [1], [2]. Modification of 
the boundary conditions for Zhu’s axisymmetric model led to 
the full analytic model for axisymmetric geometries with a 
center hole, i.e. having the geometry of a thrust AMB. An 
approximate analytic model was also developed using Taylor 
Series and ad hoc approximation methods. The frequency 
response of the full analytic model was found to agree closely 
with FEA results. The approximate model developed here 
also performed extremely well and similar to that developed 
in [3]. 
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