
System Identification of AMB Systems: 

 Steps Towards Automated Commissioning
 

Alican Sahinkaya and Jerzy T. Sawicki 
Center for Rotating Machinery Dynamics and Control (RoMaDyC)   

Washkewicz College of Engineering, Cleveland State University 

 Cleveland, OH 44115 USA 

a.sahinkaya@csuohio.edu,  j.sawicki@csuohio.edu 

 

 
Abstract— Active magnetic bearings (AMBs) are mechatronic 

devices that provide contact-free support to rotors via 

electromagnetic forces. An accurate model of the system is 

necessary to design and evaluate controllers for reliable 

operation. In this paper, identification of AMB systems is 

studied with the aim of reducing user involvement in the model 

identification process. The assumed a priori information consists 

of the amplifier model, dynamics of AMB electronics, and time 

delays due to AD/DA conversions, which are relatively easy to 

identify compared to the rotor model and AMB force model. It 

is also assumed that there exists a predesigned controller that 

stabilizes the system, not necessarily a performant one, in order 

to conduct system identification experiments. To obtain 

frequency response data for identification purposes, three 

common excitation signals for rotor systems are considered: 

impulse signal, PRBS (Pseudo-Random Binary Sequence) signal, 

and stepped sine signal. Feasibility of using each signal along 

with advantages and disadvantages over each other in obtaining 

accurate data in the context of commissioning is discussed. The 

identification problem is cast as a nonlinear least square (NLS) 

optimization problem using a parametrized model of an AMB 

system. The resulting model is physically interpretable, which 

allows defining uncertainties for AMB force constants and 

flexible mode frequencies that are standard for the model-based 

controller design strategies. The presented identification 

procedure is applied to an experimental AMB rotor system to 

validate the approach. A signal-based H∞ controller is designed 

based on the identified model to show the applicability of the 

presented method for commissioning of AMB systems. 

Performance of the system with H∞ controller is compared to an 

experimentally-tuned PID controller to demonstrate the 

superiority of a model-based controller, hence the importance of 

having an accurate plant model.  

I. INTRODUCTION 

Active Magnetic Bearing (AMB) systems consist of a 

rotor, sensors to detect the position of the rotor, controller, 

power amplifiers, and magnetic actuators, where each 

component works together to support the rotor via 

electromagnetic forces. There are many different procedures 

presented in the literature to design a controller for an AMB 

system to achieve the desired performance, with the methods 

ranging from tuning simple PID-type controllers to designing 

more complicated model-based robust controllers. Since an 

AMB system is inherently unstable and its dynamics changes 

with rotational speed due to gyroscopic effects, an accurate 

model needs to be utilized in the design of a controller. That 

is why system identification of an AMB system is an 

important aspect of the fast and reliable commissioning 

process. 

There are effective tools to create a model of an AMB 

system utilizing techniques such as finite element method 

(FEM). However not all physical parameters of the system 

can be theoretically derived, especially in the case of rotors 

with complex geometries and shrink fits. That is why it is 

necessary to either obtain or update AMB system models 

using experimental data, usually utilizing frequency response 

functions (FRFs). Lösch [1] presented an iterative procedure 

to identify AMB system models, where first, the rigid body 

model was identified to design a preliminary stabilizing 

controller, then the flexible modes of the model were 

identified using standard system identification techniques, 

and finally, the gyroscopic matrix was identified to create the 

complete AMB system model. Balini et al. [2] applied 

predictor-based subspace identification (PBSID) method to 

obtain a linear model of an AMB system, where they used the 

identified rigid body model to design a robust controller.  

Noshadi et al. [3] used genetic algorithm-based weighted 

least squares method to identify a desired ordered model 

utilizing preobtained frequency response data. Gähler et al. 

[4] proposed a two-step algorithm for multivariable 

identification of AMB systems using experimentally obtained 

FRFs to generate a model with pre-defined order and 

structure using linear least square algorithms. Wroblewski et 

al. [5] presented an experimentally-driven approach to model 

updating where the initial analytical model of an AMB 

supported machining spindle did not match the experimental 

data due to complex rotor assembly with shrink fits and 

squirrel cage induction motor. The approach used the 

knowledge of rotor assembly to select parameters of the rotor 

model to be tuned via optimization to account for complex 

dynamics that is not easy to be modeled.  

However, presented methods in the literature for 

identification of AMB systems either require an experienced 

engineer to formulate the problem and perform the 

experiments or do not identify the complete AMB system 

model. That is why the aim of this study is to explore 

methods for identification of AMB systems, specifically the 

rotor-bearing model, without relying on a skilled engineer to 

take a step towards automated commisioning, where 

automated controller synthesis procedure described in [6] can 

be used to synthesize a controller to satisfy desired robust 

performance objectives. 
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II. AMB SYSTEM IDENTIFICATION PROBLEM 

AMB systems consist of a rotor, magnetic actuators with 

built-in sensors, power amplifiers, and hardware for digital 

control. Figure 1 presents a simplified block diagram of a 

standard AMB system, where the open loop system is shown 

in solid lines. 

 
Figure 1. Block diagram of a standard AMB system 

Typically, the open loop AMB system model is obtained by 

first deriving the rotor model using FEM. Second, magnetic 

actuator model is derived based on manufacturer supplied 

specifications and linearizing magnetic force equation around 

desired operating point. Lastly, the power amplifier and time 

delays due to ADC/DAC are modeled based on hardware 

specifications such as the bandwidth of the amplifiers and 

time delays in digital converters. The power amplifier model 

can also be experimentally identified with AMBs as the load 

to account for the effects of AMB electronics rather than 

modeling the AMB electronics separately. Challenges arise 

when a rotor with a complex assembly is to be modeled using 

FEM due to difficulty in representing certain features of the 

rotor. Also, the linear approximation of the magnetic actuator 

force model usually do not fully account for certain losses 

such as iron losses and eddy current losses. Therefore, in an 

attempt to minimize the above-mentioned difficulties, this 

study focuses on experimental identification of the rotor-

bearing model, i.e., the rotor and AMB force model. 

A. AMB System FRF Data Collection 

The first step in AMB system identification is to obtain an 

open loop FRF data.  Due to unstable nature of AMB 

systems, data for the open loop system needs to be extracted 

from closed loop measurements. A method from literature is 

utilized to obtain the MIMO frequency response data of the 

open loop AMB system [7, 8].  Figure 2 illustrates the 

experiment design where P(s) is the open loop system, K(s) is 

a stabilizing controller, e is excitation signal, u is supplied 

input to the system, and y is position sensor output from the 

built-in AMB sensors. 

 
Figure 2. Experiment design for obtaining open loop FRF data for  

AMB system identification 

From Fig.2, the relation between the excitation signal e and 

output signals u and y can be obtained as 
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Then, the desired open loop system model can be constructed as 

1( ) ( ) ( )s s sP G S  

Note that the excitation input signal needs to be chosen 

carefully to make sure the existence of required inverses. 

Moreover, each column of S(s) and G(s) needs to be 

measured independently, i.e., for an AMB system with 4 

inputs, at least 4 separate experiments are required to obtain 

P(s). The required frequency response data are obtained using 

the built-in actuators and sensors of the AMBs via the use of 

carefully designed excitation signal. 

B. Excitation Signal Design 

Three commonly used force excitation signals for 

identification of rotating machinery are considered in this 

study: impulse signal, PRBS (Pseudo-Random Binary 

Sequence) signal, and stepped-sine signal. Although each 

signal can produce satisfactory results in theory, each type 

brings certain limitations to the experiment and hence their 

limitations should be identified to select the best excitation 

signal to automate AMB system identification process.  

Impulse signal has the advantage of exciting all 

frequencies at once. However, the signal might not be able to 

cause the rotor to move significantly due to limit on 

maximum current that can be supplied to the system and the 

duration of the signal which defines the frequency content. 

That’s why impulse signal usually results in poor signal-to-

noise ratio, hence result in noisy FRF. Stepped-sine signal, on 

the other hand, offers the option to change the magnitude of 

the excitation signal depending on the frequency to adjust 

signal-to-noise ratio as desired. However, the experiment 

might take too long to collect data for the desired high density 

frequency grid. PRBS signal has the advantage of being able 

to consistently excite the system to obtain data for a high-

density frequency grid with enough power that usually results 

in high signal-to-noise ratio. However, the frequency 

response data might still get corrupted due to noise. 

Considering the advantages and disadvantages of each signal, 

PRBS signal is determined to be the best option mainly due to 

ease of design, resulting high-density frequency data, and the 

required time for the experiments. 

C. Identification Problem Formulation 

Once the frequency response data is obtained, a model 

can be fit to the data using one of many methods described in 

literature such as prediction error method (PEM) [9], 

subspace state-space system identification (N4SID) [10], and 

rational fraction polynomial (RFP) method [11]. However, 

these methods require an experienced engineer to formulate 

the problem to achieve acceptable results. That is why in 

order to reduce the identification procedures dependency on 

the user, a grey-box like approach is proposed where the 



model fitting is cast as a nonlinear least square (NLS) 

problem and solved by NL2SOL algorithm [12].  

Expected modal model structure of a nonrotating AMB 

system with two radial bearings for a single plane, excluding 

amplifier, power electronics, and time delay models, has the 

following state-space matrices: 
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where w is a diagonal matrix containing rigid and flexible 

mode frequencies, d is a diagonal matrix containing modal 

damping information, ki1 and ki2 are current stiffness values of 

drive end (DE) and non-drive end (NDE) bearing actuators 

respectively, kx1 and kx2 are position stiffness values of DE 

and NDE bearing actuators respectively, bDE and bNDE 

represents input matrices for DE and NDE bearings 

respectively, cDEs and cNDEs are output matrices for DE and 

NDE position sensors respectively, and cDEa and cNDEa are 

output matrices for positions at actuator locations for DE and 

NDE bearings respectively, which are typically not equal to 

cDEs and cNDEs due to non-collocation of sensors and actuators 

of AMBs. If the AMBs of the system are identical and the 

rotor is symmetric, some simplification can be made such as 

bearing stiffness constants, kx and ki, can be set to the same 

values for the DE and NDE bearings and two planes of the 

AMB system can be considered identical.  

The cost function for the NLS problem is chosen to be the 

weighted sum of squared values of the difference between the 

experimentally obtained FRF data and fitted model frequency 

response. The only user involvement in this framework is to 

define the number of flexible modes in the relevant frequency 

region, identify parts of the data that correspond to 

resonances and anti-resonances, and identify parts of the data 

that are corrupted by noise. The weights for parts around 

resonances and anti-resonance are set to be 30, parts 

corrupted by noise are set to be 0.1, and the rest are set to be 

1. The calculated errors are converted to dB before applying 

the weights to reduce the magnitude difference within the 

error vector. Since there is no unique solution to this problem, 

bearing constants cannot be identified separately.  

Gyroscopic matrix G is identified after identifying the 

nonrotating AMB system model. The full AMB system can 

be constructed as a two decoupled systems coupled by the 

gyroscopic matrix G and is modeled as; 
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where Ω is the rotational speed of the rotor. The main effect 

introduced by the gyroscopic effects is the bifurcation of 

natural frequencies of the rotor. The amount of bifurcation is 

determined by the rotational speed of the rotor and the ratio 

of its transverse moment of inertia and polar moment of 

inertia. This means that a controller for the AMBs should be 

designed to compensate for the change in the natural 

frequencies of the system to prevent any possible instability 

and hence gyroscopic matrix needs to be identified 

accurately. Similar to the identification of nonrotating AMB 

system model, NLS problem is formulated and solved using 

the same weights for the cost function, where only the 

gyroscopic matrix is the unknown since the nonrotating AMB 

system matrices were found in the previous step.   

III. CONTROLLER DESIGN 

In order to show the validity of the identification method 

and to show how the identified model can be used to 

synthesize controllers, a signal-based H∞ controller is 

designed using automated H∞ controller design method 

described in [6]. The procedure is briefly described in this 

section for completeness. 

The standard control configuration is shown in Fig. 3, 

where P is the generalized plant and K is the controller to be 

designed. In the standard control configuration, the vector w 

represents exogenous inputs to the system, such as expected 

disturbances acting on the system, reference trajectory, and 

expected sensor noise, and the vector z represents the outputs 

of the system to be regulated, such as tracking errors, 

vibrations of the system, and control input magnitudes.  
 

 
Figure 3. Standard control problem formulation 

In H∞ control problem, the vectors w and z have a 2-norm of 

unity and their expected values are represented by the weights 

embedded within the generalized plant P. The purpose of H∞ 

control is to internally stabilize the closed loop system while 

minimizing the H∞ norm of the closed loop transfer function 

from exogenous input w to performance output z. Depending 

on the selection of signals for w and z, the H∞ control 

problem can be formulated either as mixed-sensitivity 

problem to shape selected closed-loop transfer functions or as 

signal-based H∞ control problem to regulate output signals 

that are stacked in the vector z under sinusoidal excitations 

through the signals stacked in the vector w. In this study, the 

latter controller design approach is used since signal-based 

H∞ control is more suited for control problems where multiple 

control objectives need to be satisfied. The formulation of 

signal-based H∞ control problem can be extended to include 

uncertainties in the plant model by simply adding additional 

input-output signals that represent the given uncertainty.  

For the AMB system studied, a standard disturbance 

rejection control problem is formulated using signal-based H∞ 

control approach. Figure 4 shows the problem formulation 

block diagram where 𝐆 is the uncertain plant model, Wd and 



Wn are weights that represent the expected frequency content 

of disturbance forces (in units of Amps since the identified 

model is from control current input to position output) and 

sensor noise respectively, and Wu and Wp are weights 

representing the desired control input magnitudes and 

vibrations at sensor locations respectively.  
 

 
    Figure 4. Signal-based H∞ control problem formulation 

The procedure to synthesize the controller described in [6] 

utilizes µ-analysis for robust performance in the selection of 

weights to achieve desired performance [13]. In the 

procedure, the user defines the control objectives via weights, 

which are referred to as analysis weights in the approach, and 

the uncertainties in the plant model. The procedure then casts 

the weight tuning process as an optimization problem, where 

the cost function is the µ-value of the closed-loop system 

with analysis weights. The cost function also includes a 

penalty term for unstable controllers to make sure the 

synthesized controller is stable. The optimization problem is 

then solved by genetic algorithm, where the algorithm finds 

weights to be used in controller synthesis that results in a µ-

value of less than unity, implying that the controller achieves 

robust performance for the given control problem. 

IV. EXPERIMENTAL RESULTS 

A. Experimental AMB System 

The presented identification framework is applied to an 

experimental AMB system manufactured by Revolve 

Magnetic Bearings, subsidiary of SKF, pictured in Fig. 5. The 

AMB system consists of two radial AMBs which are referred 

to as drive end (DE) and non-drive end (NDE) bearing, one 

thrust AMB, a configurable rotor, and a brush type DC motor. 

The radial AMBs apply forces to the rotor in two 

perpendicular directions at 45 degrees with respect to the 

vertical axis. Each radial AMB is equipped with a touchdown 

bearing to provide a resting place for the rotor and to prevent 

damage to the system in the event of a failure. The 

touchdown bearings have a radial clearance of about 190 µm.  

 
Figure 5. Experimental AMB system 

The rotor configuration for this study is chosen to have the 

first four flexible modes ( 90 Hz, 252 Hz, 510 Hz, 730 Hz ) 

within the manufacturer supplied bandwidth of the actuators, 

around ~720 Hz to make sure the presented method works for 

flexible rotors. The solid shaft is made of stainless steel with 

a diameter of 9.525 mm and length of 457.2 mm. The AMB 

rotors and disk are attached to the shaft via tapered sleeves. 

The controller unit for the AMB system has a sampling 

frequency of 10 kHz. Data acquisition and controller 

implementation are done using dSPACE hardware.  

In order to obtain open loop frequency response data, a 

preliminary low stiffness PID controller is experimentally 

tuned to provide stable levitation with 1 Amp bias current, 

which means the identified model is valid for only 1 Amp 

bias and the identification procedure needs to be repeated for 

different bias current values. For the excitation, a 12
th

 order 

PRBS signal with 5 kHz clock speed and 4 periods is 

designed, which allows the whole data collection procedure 

to take place in less than a minute and the signal provides a 

high-density frequency grid with ~1.22 Hz frequency steps. A 

sampling rate of 10 kHz is used to collect the data during the 

identification experiments. The first period of the PRBS 

signal is omitted for the post-processing to remove the 

transient response from the collected data. Same excitation 

signal is used to collect data for both nonrotating and rotating 

case. The experiment to collect data is performed following 

simple steps; first, energize the AMBs to levitate the rotor, 

and then after transients died out, apply excitation to DE x-

axis, NDE x-axis, DE y-axis, and lastly, NDE y-axis while 

waiting in between for transients to die out. The position 

measurements for the whole experiment for nonrotating AMB 

system identification is shown in Fig. 6 and the sum of the 

control currents and excitation signal are shown in Fig.7.  
 

 
Figure 6. Position measurements during nonrotating AMB system 

identification experiment 

 
Figure 7. Current supplied to AMBs (excluding the bias current) during 

nonrotating AMB system identification experiment 



One thing to pay attention to in Fig. 7 is the difference in 

control current values in x-axis and y-axis of the NDE 

bearing during simple levitation, i.e., the data between 5 

seconds and 6 seconds in Fig. 7. The difference is more 

clearly shown in Table I. Since the rotor is symmetric and 

NDE AMB bearing is identical for both x and y-axis, it is 

expected for both axes to have similar, if not the same, 

control current magnitudes. The existence of a difference can 

be utilized to identify possible faults in the system and might 

help to interpret the observed behavior of the system. One of 

the possible reasons behind the observed difference is lack of 

alignment of the motor shaft center, DE bearing center, and 

NDE bearing center. The studied system is reconfigurable 

and the AMB housings and motor are hand tightened, which 

might cause them to be slightly tilted. Also, the controller 

uses the sensors to determine the bearing center and any bias 

error in sensor calibration might contribute to misalignment. 

However, these issues have no significant impact on the 

identification framework described in this study.  

Once the measurements are collected for nonrotating 

AMB system, the method from Section II.A is utilized to 

extract the open loop AMB system frequency response data 

from closed loop measurements. Certain assumptions are 

made before identifying the model by observing obtained 

open loop frequency response data as well as knowing 

identical AMBs are used both for DE and NDE bearings. In 

the experimental setup, the DE and NDE radial AMBs are 

identical and the bearing constants are assumed to be the 

same. The experimental data showed identical behavior for 

two perpendicular planes of the rotor, referred to as x and y, 

hence the models for the two perpendicular planes are 

assumed to be the same as well. After these simplifications, 

the desired parametrized AMB system model is constructed 

with the knowledge that 4 flexible modes are within the 

bandwidth of the actuators (~720 Hz), which is apparent from 

the experimental data. With these assumptions, the 

parametrized AMB model has 46 unknown parameters. 

Important regions are selected to be  5 Hz around the peaks 

and valleys of each frequency response channel to apply the 

weight of 30 and parts of the data corrupted by noise are 

chosen to be between 300 Hz to 480 Hz and 540 Hz to 640 

Hz for the DE input - NDE output frequency response data to 

apply the weight of 0.1. The NLS problem is solved using the 

data for only one plane due to the symmetry of the system. 

The comparison of the frequency response of one of the 

identified model, which is generated by the optimization 

procedure, and the experimental data for x-axis input and x 

and y-axis output is shown in Fig. 8. Due to the symmetry of 

the studied AMB system, the frequency response data for the 

other half of the AMB model, in other words, frequency 

response for y-axis inputs, was comparable to x-axis inputs, 

with some negligible differences that can be associated with 

the nature of experimental research. That is why only half of 

the model is presented further in the paper which seems 

sufficient to validate the presented identification method. 

In nonrotating case, theoretically, there should be no 

cross-coupling term (assuming no noise). However, it is clear 

from Fig. 8 that there is cross-coupling between the two 

perpendicular axes of the system where magnitude is above 

the noise level which is around 1 µm/A. However the cross-

coupling is significant primarily at natural frequencies. 

Possible reason for the presence of cross-coupling of x and y-

axis might be due to the cross-coupling stiffness of the 

flexible coupling element between the rotor and motor. 

Another unexpected behavior in the frequency response data 

shown in Fig. 8 is the existence of local jumps in magnitude 

for DEx input – DEx output around 400 Hz and NDEx input – 

NDEx output around 650 Hz. The reason behind the cross-

coupling and the local jumps in the frequency response data 

are considered unmodeled dynamics in this study and treated 

as a disturbance for controller synthesis purposes.   
  

 
Figure 8. Comparison of identified model (dashed-red) and open loop FRF 

data (solid-blue) 

Although Fig. 8 shows acceptable agreement between model 

and data for a single plane, further verification is done by 

comparing time response of the model to make sure the 

effects of unmodeled dynamics are rather negligible. For this 

purpose, the response of the AMB system in DE and NDE x-

axis to PRBS signal applied to DE x-axis is compared to the 



identified model response and is shown in Fig. 9. Time 

response comparison of the closed-loop identified model and 

physical system also shows that the identified open loop 

model is accurate. There are slight differences in magnitudes 

however these can be explained by disturbances acting on the 

system that are not simulated such as the AMB sensor noise 

and/or unmodeled dynamics. 

 

 
Figure 9. Comparison of closed loop x-axis response of the identified model 

(dashed-red) and physical system (solid-blue) to a PRBS excitation applied 

to x-axis of DE bearing 

Since the nonrotating AMB system model is obtained with 

acceptable accuracy, next step to finalize the identification 

process is to identify the gyroscopic matrix. For this purpose, 

similar procedure used in identification of nonrotating AMB 

system is applied to the rotating AMB system at 3000 rpm. 

Although the run speed is chosen arbitrarily for this study, in 

reality it should be chosen such that gyroscopic effects are 

clearly seen in the system response. With 4 flexible modes 

included in the nonrotating AMB model, there are 25 

unknown parameters that define the gyroscopic matrix, which 

are identified through the NLS problem described in Section 

II.C. Since the cross-coupling terms were not reliable due to 

unmodeled dynamics for the system studied, they are not 

used in the cost function. Also data below 50 Hz, which 

corresponds to rotational speed of the rotor during 

experiments, is omitted for the optimization process due to 

possible noise related issues. Figure 10 illustrates the 

comparison of the open loop frequency response data 

obtained while the rotor was running at 3000 rpm, which is 

extracted from the closed loop measurements using the 

method described in Section II.A, to the model generated via 

the NLS optimization. The bifurcation of flexible modes due 

to gyroscopic effects is clear for the 3
rd

 and 4
th

 flexible 

modes, both in experimental frequency response data and 

identified model output in Fig. 10, which verifies that the 

gyroscopic matrix is identified correctly. However there is a 

clear mismatch in cross-coupling terms. Although the reason 

behind the mismatch is not obvious, it might still be 

considered an acceptable match given that there was cross-

coupling in nonrotating case, which implies the existence of 

unmodeled dynamics for the given system.   

 

 
Figure 10. Comparison of identified model (dashed-red) and open loop frf 

data (solid-blue) obtained at 3000 rpm 

 

Having the gyroscopic matrix identified, the full speed 

dependent model of the AMB system is completed. As a last 

verification step to determine if the model truly represents the 

physical system, a new measurement from the AMB system 

running at 1600 rpm is collected using the same PRBS signal 

as excitation signal and open loop FRF data is extracted from 

the closed-loop measurements using the method described in 

Section II.A. The obtained data is then compared with the 

speed-dependent model at 1600 rpm and the comparison is 

shown in Fig. 11. As expected, the bifurcations of the 3rd and 

4th flexible modes are still apparent at 1600 rpm and the 

amount of bifurcation is less compared to 3000 rpm case. 

There is still mismatch on the cross-coupling terms however 

the flexible mode frequencies match almost perfectly, which 

is an indication that the gyroscopic matrix is identified 

correctly.   



 

 
Figure 11.   Comparison of identified model (dashed-red) and open loop frf 

data (solid-blue) obtained at 1600 rpm   

There are a few limitations of the proposed identification 

method. First, the NLS problem is often not easy to solve, 

requires solving the problem multiple times with different 

initial guesses due to solutions dependency on the initial 

guess, and takes around 30 minutes to find an acceptable 

solution to construct the full model of the studied AMB 

system, and solutions are not identical mainly due to noisy 

measurements. However all solutions result in models that are 

in relatively acceptable agreement with the experimental data, 

for both the frequency response and time response. Second, 

the bearing constants are not identified separately which 

prevents the user from defining performance objectives using 

units of force or defining uncertainties for the AMB bearing 

force constants. However this is not a problem since they can 

be defined in a way that represents a physical meaning such 

as a percentage of maximum load capacity of the bearings 

and percent uncertainty of the bearing constants as 

multiplicative uncertainty in relevant channels.  

B. Automated Controller Synthesis for the AMB System 

With the results shown in Figs. 8-11, the identified speed-

dependent AMB rotor system model can be considered an 

accurate approximation of the real physical system. However, 

it is not quite the same due to the existence of unmodeled 

dynamics and errors associated with the nature of 

experimental research. That is why some uncertainties need 

to be defined for controller synthesis to make sure that the 

physical model is captured within the set of plants defined by 

the nominal model, which is the identified full model of the 

AMB system, plus the defined uncertainties. One advantage 

of the presented identification method in this paper is the 

ability to easily define uncertainties. The flexible mode 

frequencies and flexible mode damping are already identified 

individually and desired uncertainties can be defined directly. 

However, this is not the case for the AMB force constants 

since they are not identified individually. However, 

multiplicative uncertainties can be defined as an alternative at 

corresponding channels to mimic the same physical meaning. 

For the system studied, since the PRBS signal creates a 

frequency grid with ~1.22 Hz steps, ±2 Hz uncertainties are 

defined for the flexible mode frequencies. For the flexible 

mode damping values, since experimental data usually is not 

reliable to identify damping accurately, 50% uncertainty is 

defined to make sure the real system damping values are 

covered with the uncertainty. Lastly, 5% uncertainty is 

defined for both current and position stiffness constant of 

AMBs due to identified models gain matching the 

experimental data excluding the unmodeled dynamics. The 

current stiffness uncertainty is defined as uncertainty in the 

gain of the system and position stiffness uncertainty is 

defined for the cDEa
 variable.  

The performance objective for the studied AMB system is 

chosen as a standard disturbance rejection objective, which 

means to contain the orbits with in a circle of desired radius 

under the influence of residual unbalance. For the studied 

system, the objective of control is chosen to keep vibration 

magnitudes less than 36 µm without saturating the AMB 

actuators up to maximum design speed of 6000 rpm in the 

presence of 1 µm sensor noise and disturbance forces which 

is mainly the unbalance force. Additionally, during simple 

levitation without rotation, the vibrations should not exceed 7 

µm. Since the bearing current stiffness is not identified 

separately, the disturbance forces cannot be defined in units 

of Newtons. However, there is no issue with defining 

disturbance forces in units of Amps since the identified 

system is from control current in Amps to position in µm. 

One way of defining disturbance forces is to set them to some 

percentage of maximum capacity of the AMB bearings. For 

this study, the amount of disturbance forces acting on the 

studied system is estimated by observing control current 

magnitudes. For this purpose, an experimentally tuned 

decentralized PID controller is designed to satisfy the 

performance objective, where the PID controller includes a 

lead-lag filter to stabilize the 3
rd

 flexible mode and a notch 

filter to stabilize the 4
th

 flexible mode. The AMB system, 

with the PID controller, is run at various speeds and the 

control current magnitude spectrum at running frequency is 



observed, which is obtained by simple Fourier Transform for 

multiple speeds including the maximum design speed of 6000 

rpm. The observed values are tabulated in Table I. Although 

the magnitudes do not correspond exactly to the actual 

disturbance forces acting on the system, it can be used as a 

rough estimate. 

Table I. OBSERVED CONTROL CURRENT MAGNITUDES UNDER VARIOUS 

ROTATIONAL SPEEDS WITH PID CONTROL 
 DEx [A] DEy [A] NDEx [A] NDEy [A] 

0 rpm 0.2078 0.0682 0.1540 0.3969 

1600 rpm 0.0142 0.0135 0.0798 0.0793 

3000 rpm 0.1384 0.1441 0.1291 0.1382 

6000 rpm 0.2786 0.2754 0.1804 0.2058 

As mentioned in Section III.B, there is significant difference 

in control current magnitudes of the two perpendicular axes 

of the same bearing for nonrotating levitation, mostly due to 

misalignment between motor shaft center, DE bearing center, 

and NDE bearing center.  

Analysis weights for disturbance forces are defined using 

the values shown in Table I, excluding the nonrotating (0 

rpm) case values, and increasing them by 5% to compensate 

for unmodeled dynamics and to prevent underestimating the 

disturbance forces since PID controller does not fully cancel 

out the disturbance forces. Since a sharp decrease in 

disturbance magnitude is necessary after the frequency 

corresponding to the maximum design speed, Chebyshev type 

II filter is used instead of usual first or second order filter for 

roll off. The weights for the sensor noise are set to be a 

constant 1 µm through all frequencies and the weights for the 

control current magnitudes are set to be 1 Amp up to the 

bandwidth allowed by the hardware and rolls off afterward 

via the use of a second-order filter.  As for the vibration 

levels, a first order filter is used where the magnitude is set to 

be 36 µm after 0.1 Hz as per objective, however, for lower 

frequencies it is set to be 0.7 µm instead of 7 µm to 

compensate for not representing the DC component for the 

disturbance force accurately. After defining the analysis 

weights, the algorithm from [6] is used to design the 

controller, which results in a controller with 48 states. 

Frequency response comparison of the experimentally tuned 

decentralized PID controller and the H∞ controller is shown 

Fig 12, where the other half is comparable to the shown 

frequency response due to the symmetry of the AMB system 

studied.  

To show the advantage of using the model-based 

controllers over the PID controller, hence the importance of 

having an accurate system model, orbits at various speeds, up 

to maximum design speed of 6000 rpm for the studied AMB 

system are shown in Fig. 13, where the PID controller is 

tuned experimentally to achieve the defined performance 

objective.  

It is clear from Fig. 13 that the H∞ controller performs 

better than the PID controller at all speeds. One interesting 

observation is at 6000 rpm. The orbit shape for the NDE 

bearing at 6000 rpm gets warped into a diamond shape, both 

for PID control and H∞ control, where it is more apparent for 

the latter. This indicates a strong 3X component in the 

vibration signal. Possible reason for the orbits changing their 

shape from relatively circular to a diamond-like shape is the 

already mentioned misalignment between the motor shaft 

center, DE bearing center, and NDE bearing center. 

 

 
Figure 12.Frequency response of decentralized PID controller (solid-blue) 

and H∞ controller (dashed-red) 

I. CONCLUSION 

This paper presented a method to identify an AMB system 

model that aims to reduce the user involvement in 

commissioning process. First, the AMB model is 

parametrized to be able to formulate the identification 

problem as a nonlinear least squares (NLS) problem. Second, 

the design of identification experiments for an AMB system 

is explained, where different excitation signals are considered 

and their feasibility is discussed to determine the best option, 

which is determined to be the PRBS signal. Third, the model 

is identified using a NLS solver and the model response is 

compared to the physical response of the system to check the 

accuracy of the identified model. Results show the validity of 

the presented identification procedure. Lastly, to show that 

the identified model can be used in robust controller 



synthesis, a robust signal-based H∞ controller is designed 

using the identified model and the performance of the 

controller is compared with an experimentally-tuned 

decentralized PID controller. Comparison of the achieved 

orbit sizes confirms the superiority of the model-based 

control strategy, hence the importance of accurate 

identification of AMB systems.  

 

 
Figure 13. Orbit size comparison between PID control (blue), H∞ control 

(black), and performance objective (red) 
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