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Abstract— The paper presents a model of dynamics of multispan 

flexible rotor on active magnetic bearings (AMB) applied for 
composing of diagnostic characters of malfunctions.  

I. INTRODUCTION 

One of strongly developed lines of investigation of 
electromagnetic suspension is application of active magnetic 
bearings (AMB) to support complex flexible rotors of big size 
and weight, for example, in high-temperature gas-cooled 
nuclear power plants [1] or in wind power plants [2,3]. Such 
multispan flexible heterogeneous rotors meet the criteria 
formulated in [4], which describe complex unique system. 
Such rotors combine manifold revolving machines. Each 
AMB has its own control system interacting with other 
bearings’ systems via the rotor. Numerous forces influencing 
the rotor excite several rotor vibration modes at once which, 
when combined, could lead to substantially different patterns 
of movement of various rotor parts. Thus, the system as a 
whole is completely nonlinear. 

Application of the model of dynamics of multispan 
flexible rotor on AMB for diagnostics requires that during 
design and commissioning operations the research of 
dynamics of a malfunctioning rotor is conducted and 
diagnostic characters, or signatures, of such malfunctions are 
defined. Using measurable parameters that reflect the 
dynamics of such signatures, the framework is created that 
allows automatic detection of the malfunctions. This 
framework is included in diagnostic system of multispan 
flexible rotor on AMB running in operation modes. Therefore, 
the developed model should be fitting for computation of the 
rotor dynamics both in normal and in emergency operation 
modes taking into account structural deviations of design 
factors from their nominal values. It should also allow 
accounting for external influences, e.g. from seismic 
disturbances or hurricane winds if the rotor is a part of wind 
power plant. 

II. FUNDAMENTAL MODEL CHARACTERISTICS 

To conduct the research needed both for designing and for 
operation such rotor systems we have composed the model of 
dynamics of flexible heterogeneous multispan rotor on AMB 
which is comprised by the mechanical model, the models of 
forces of various nature, the model of control system. The 
mechanical model is based on equations and results of 
studying of dynamics of flexible rotors [5]. Majority of 
dynamics problems take the rotor as elastic heterogeneous rod 
with piecewise characteristics. Its movements could be divided 

in for types of oscillations: as solid body, elastic torsional 
vibrations, elastic longitudinal and bending vibrations. For 
small oscillations of straight bars elastic torsional, longitudinal 
and bending oscillations could be considered independent. 
Specifics of dynamics of the rotor on AMB are determined by 
bending oscillations, therefore those bending oscillations are 
the main subject for this paper. 

 

A. The mechanical model 

In the mechanical model of the rotor Cartesian coordinate 
system 0xyz is used. 0x axis is taken as vertical one coinciding 
with the rotation axis of the unstrained rotor. For composing 
the mechanical model the rotor is divided in series of 
interconnected homogeneous round sectors. For description of 
bending oscillations of sections the Timoshenko model of 
beam [6] is used, according to which the equations defining 
the dynamics of the rotor are 
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Here Uy(x,t), Θz(x,t) describe linear and angular motions of 
the rotor along the 0y axis, Mz(x,t), Qy(x,t) describe inner 
torques and intersecting stresses in the cross-section of the 

rotor. qy, µz are distributed force and torque, respectively. 
E, ν, G=E/(2(1+ν)) are modulus of elasticity, Poisson ratio and 

rigidity modulus; ρ is the density of rotor’s material; f, I are 
area of normal section and axial moment of inertia of a sector. 
m is linear mass of a sector; r* is the coefficient for taking into 
account irregularity of tangential stress over normal section of 
a sector. 

To combine the sectors in the integral mechanical model 
three types of connections are utilized: rigid, elastic and 

support. Uy(x,t), Θz(x,t) and Mz(x,t) are continuous at rigid 
connections and at support points. Qy(x,t) is continuous at 
rigid connections but is disconnected at the support points 
with jump equal to support reaction force. In the elastic 
connection section all forces and torques are continuous. 

Equations (1) define bending vibrations along the 0y axis; 
similar ones could be composed for vibrations along the 0z 



axis, which will be characterized by Uz(x,t), Θy(x,t), My(x,t), 
Qz(x,t). 

To transition to the discrete model of the rotor 
characteristic functions are expanded into series of the 

eigenmodes Uk(x), Θk(x), Mk(x), Qk(x). For the movements the 
expansion is written as follows: 
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Here K is the amount of eigenmodes taken into account. 
Let us define a={ak(t)}, b={bk(t)} as K-dimensioned 

vectors of generalized coordinates with components being 
functions of time ak(t) and bk(t) from expansion (2). Similar 
forms are used for functions describing rotation angles, 
torques and intersection stresses. 

Choice of the basis is determined by the problem being 
solved. For calculation of dynamics of elastic structures in the 
presence of nonlinear interlinks, eigenmodes of oscillations of 
an unsupported rotor plus rotor movements as a solid body 
could be used. For modelling of dynamics of a flexible 
heterogeneous rotor on AMB we used the eigenmodes of 
oscillations of a rotor with pivoting support in cross-sections 
of AMB plus the static deformation modes. In this case AMB 
control system is expected to generate the required control 
laws (including linear ones) of the control forces depending on 
rotor displacements, thus it is reasonable to use as basis the 
orthogonal forms of Eigen oscillations of the rotor with 
boundary conditions corresponding to rotor resting on elastic 
supports with rigidity cn at cross-sections x = xn where AMB 

are placed and with free ends ( Nn ,1= , N is the amount of 

radial AMB). For basis to be orthogonal and normalized the 
following equations stand:  
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Here m0 is the mass of the rotor. Integration is done over the 
whole length of the rotor l. 

The mechanical model of the rotor is composed for vectors 
of generalized coordinates. To derive the solving equations 
Lagrange equations of second kind are used. 

After substitution of derived expressions to Lagrange 
equations and taking into account the properties of 
eigenmodes of oscillations the mathematical model of 
dynamics of the rotor along the 0y axis is written as: 
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1 Kdiag ωωω=Ω is a K-th order diagonal matrix with 

elements being squares of the Eigen frequencies of the rotor. 
The equation for the vector b describing the movements of 

the rotor in the second horizontal axis 0z is similar. 

Components of the vectors of generalized forces are 
defined in a standard way and, taking into account equations 
(1) and expansions (2), could be written as: 
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This expression is formally correct for concentrated actions as 
well: such actions could be described using delta-functions. 
The formulas for the most important forces that are accounted 
for in the mathematical model are presented below. 

The rotor is held in the desired position by forces from 
radial AMB Fn which depend on horizontal displacements of 
the rotor dn = Uy(xn) in the cross-sections of AMB and on 
currents in the coils. By virtue of (2) the displacement vector 
d = {dn} could be expressed as follows: 

{ } ).(,, nknknk xUhh ==⋅= HaHd    

Knowing the displacement vector and the currents in the 
coils, it is possible to determine the forces vector F = {Fn}. 
This vector could be expressed as the sum 

),...,(*, 1 Nccdiag=+⋅−= cFdcF . 

The first term of the force describes the reaction of elastic 
supports, which is already accounted for in the oscillation 
eigenmodes. Thus, we should only put the second term into 
the equations (4) as a generalized force, which could be 
expressed by the following formula: 

H.cHCF,HaCFHRa ⋅⋅=⋅+⋅=⋅= TTT
*

 

Upper index “T” stands for transposition operation of the 
matrix. 

The gyroscopic forces in the motion equations (1) are 
included via distributed torques: 
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dt

dϕ
ω =   is the angular speed of the rotor, φ is the 

rotation angle of the rotor. Based on (2) the vectors of  the 
generalized forced are expanded as follows: 
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The presence of imbalance in the rotor impacts its 
dynamics by a distributed force 

[ ]
[ ] .0,cos)(sin)(

,sin)(cos)(

21

2

21

2

==+=

−=

yzz

y

xexemq

xexemq

µµϕϕω

ϕϕω

Here e1(x), e2(x) describe the position of center of mass of 
normal section of the rotor relative to the rotation axis in the 
coordinate system attached to the rotor. The related vectors of 
generalized forces are: 
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Similar method is used to express the generalized forces of 
other natures. For a vertically placed rotor the gravity force 
effect on lateral rotor movements in the motion equations 
could be expressed by the following distributed forces: 
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Here Q0(x) is the axial static force impacting the rotor.  

The electromagnetic forces in generator, exciter and motor, 
as well as gas dynamic forces in turbines, compressors and 
their shafts' labyrinth seals are modelled by attraction forces: 

0,, ==== yzzezyey UrqUrq µµ  

and circulation forces: 

.0,, ==−== yzyvzzvy UrqUrq µµ  

Here re, rv are coefficients which depend on the design and 
characteristics of aforementioned elements.  

 

B. Accounting for the inner damping 

One of the main factors considerably influencing dynamics 
of the rotor is energy dissipation caused by external and inner 
damping [5]. The forces from external viscous friction 
associated with the rotor interaction with surrounding gas 
depend on the rotor design and speed. The electromagnetic 
forces in AMB are similar in the damping effect but are far 
bigger by value, so accounting for the external damping does 
not considerably improve the accuracy of the numerical 
analysis of dynamics of the rotor. 

The inner damping can have substantial destabilizing 
effect on dynamics of the rotor. Numerous studies [7] show 
that in quite wide range of frequencies (0-10000 Hz) the level 
of dissipation of energy in structural materials does not depend 
on speed of deformation, but rather on stress conditions, 
deformation level and material temperature. The structural 
damping in joints has similar properties. Currently there are 
numerous theories of the inner damping which, under certain 
conditions, allow for accounting for the key features of the 
process of inner energy dissipation. For that the dependency 

between tensor of deformation ε and tensor of stress σ during 

the oscillations (including nonlinear) is used: σ=σ(ε). In the 
general case, this dependency is nonlinear and ambiguous 
(hysteresis-like). Universal models of such dependency are not 
developed yet. Most theories and models of inner energy 
dissipation which are verified by experiments are either very 
complex for practical applications or are aimed at a limited 
pool of particular problems (steady-state oscillations, 
fixed-frequency oscillations, linear problems) [8, 9]. As a 
result, for the inner damping accounting we chose a trade-off 
decision based on two assumptions: a) energy dissipation has 
substantial effect on the oscillations near the resonance 
frequencies when rotor is revolving on near-Eigen 
frequencies; b) fundamental effects on dynamics of 
oscillations are defined by level of energy dissipation in one 
oscillation period (hysteresis loop area), and detailed 
dependency of stress from deformation (hysteresis loop shape) 
is of second importance. 

In the developed model of dynamics of a flexible 
heterogeneous rotor, the inner damping is accounted 
separately for all generalized coordinates. For each 
generalized coordinate phenomenological model of friction 
damping is used (Korchinsky model, Leonov and Bezpalko 
model) [10]. Presence of the inner damping in the material of 
the rotor leads to additional generalized force added to all 
motion equations for the generalized coordinate qi. In the 
coordinate system attached to the rotor additional force is 
expressed as follows: 
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Here ri is partial rigidity associated with the coordinate qi; 

χ, α are the coefficients defining the level of energy 
dissipation and type of dependency from oscillation amplitude. 

During cyclic deformations having amplitude ∆qi energy 
loss in the presence of force (5) is defined as 
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Total amount of vibrational energy is defined as 

W = ri  (∆qi)
2
/2 while relative energy loss is defined as 
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The relation (6) along with the dependency between 

logarithmic decrement δ and relative loss ψ (ψ = 2δ) leads to 

possibility of finding the coefficients χ and α based on 
experimental data on the logarithmic decrements. It is worth 

noting that for α = 1 expression (5) is reduced to the model of 
amplitude-independent damping, like in the model of the 
viscous friction. In this case: 
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Relation (7) is described as hysteresis loop shaped as 
triangle plotted on the axes Ri  and qi. 

The vectors of generalized coordinates a, b (2) describe the 
movement of the rotor in the fixed global coordinate system 
0xyz. Vector a describes rotor movements along the axis 0y, 
and vector b along the axis 0z. To describe the deformations of 
the rotor it is convenient to use a coordinate system 0XYZ 
which is attached to the rotor. 0X axis of the moving 
coordinate system coincides with 0x axis of the fixed system; 
axes 0Y and 0Z have angle φ against the axes 0y and 0z of the 
fixed system, respectively. Using this dependency of moving 
and fixed coordinate systems, for the vectors of generalized 
coordinates A, B defining the rotor movements in the moving 
coordinate system along 0Y and 0Z axes, it could be put as 
follows: 
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To account for inner energy dissipation it is enough to add 
dissipation forces in the respective movement equations: 
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Here 
L

D  is the diagonal matrix of logarithmic decrements for 

the eigenmode oscillations. Expression Ф(q) stands for the 
vector function with components defined by respective 
components of the vector q: 
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The generalized forces, when expressed in the moving 
coordinate system, are described as harmonic forces in the 
right-hand members of equations (5), as seen by inverse 
transformation of equations (9): 
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Thus, to account for the inner energy dissipation in the 
rotor material and for the structural damping during the rotor 
deformations it is enough to add the generalized forces (10) to 
the mathematical model of dynamics of the rotor (4). 

 

C. Accounting for the contact with a retainer bearing 

The machine of the rotor on AMB includes also 
mechanical retainer bearings, which prevent the rotor from 
colliding with structural elements of the stator (AMB magnets, 
guiding rigs in turbines and compressors, etc.) during 
emergency modes of operations (e.g. de-energizing of AMB) 
and during intensive external influences. Therefore, 
accounting for the rotor interaction with retainer bearings is 
essential for adequate modelling of dynamics of the rotor 
during emergencies. The model of retainer bearing is 
composed by analogy of the model of ring support of the 
tubing [11] with added specificity caused by rotation. 

When analyzing physical processes taking place during 
interaction of an element of the rotor and the retainer bearing it 
is assumed that contact zone height is substantially smaller 
than the height of the rotor. In this case, contact zone size is 
negligible, and flat model of interaction of the rotor and the 
retainer bearing could be used. Relative position of the rotor 
and the retainer bearing is shown on Figure 1a. External 
surface of the rotor is described as a circle with radius R and 
center in point O. The origin of the coordinate system 0xyz 
coincides with O. Contacting surface of the retainer bearing is 
modelled as a circle with radius R0 and center at S. Relative 
position of the rotor and the bearing in equilibrium position is 
defined by the coordinates of S. Drawing of interaction of the 
rotor and the retainer bearing is shown on Figure 1b. 

Figure 1. a) Relative position of the rotor and the retainer bearing; b) drawing 
of interaction of the rotor and the retainer bearing. 

In mathematical formulation of the interaction process, it is 
assumed that linear size of contact area is substantially smaller 
than perimeter of the rotor circle. This allows using point 
model of the contact. In the contact point D tangents to the 
rotor surface and the retainer bearing surface coincide. When 
using elastic contact model, it could be seen that at the point D 
reaction force N, which is normal to contacting surfaces, is 
proportional to deformation d of interacting elements:  

.dN ⋅= C    (11) 

Here C is rigidity of contact interaction. The normal force N 
effecting the rotor is directed from the point of contact to the 
center of the cross-section of the rotor. 

At the point of contact there is also force T that is directed 
tangentially and its value is proportional to the reaction force 

and the friction coefficient µ: 

.NT ⋅= µ    (12) 

Tangential force T affecting the rotor is directed oppositely 
to the tangential part of the movement speed of the point of 
contact. 

Let us denote the maximum clearance between the rotor 

and the retainer bearing as ∆0 = R0 – R. Minimum clearance 
happens when centers of the rotor and the bearing (points O 
and S on Figure 1) coincide. Relative position of the 
aforementioned centers in the original equilibrium position is 

described by the vector .OS=S  
In the 2D coordinate system 0yz position of the center of 

the rotor during its movement is described by the vector U(t), 
and position of the center of the retainer bearing by the vector 
S. In that case relative position of centers of the retainer 
bearing and the rotor is characterized by the vector 

).(tUS∆ −=    (13) 

Modulus of this vector ∆ equals current distance between 
the center of the retainer bearing and the center of the rotor. It 

is obvious that, when ∆<∆0, there is no contact between the 
rotor and the retainer bearing. In the other case contact 
happens, and the magnitude of it is defined by the relative 

deformation of the rotor and the bearing d = ∆ –∆0. 

The modulus of the reaction force (which is normal to 
contact surface) is defined by expression (11) and the force 
direction coincides with direction of the vector (13). Thusly, 
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when d > 0, the vector of normal contact force effecting the 
rotor from the retainer bearing could be written as follows: 

./ ∆⋅⋅= ∆N dC     

Value of tangential force effecting the rotor from the 
retainer bearing is defined by the expression (12) and its 
direction by the direction of the slip speed of the rotor in the 
contact point VT. 

The total speed VR(t) of the rotor at the contact point is 
composed by two parts: first is attributed to translational 
motion and is equal to the speed of the center of the rotor V(t), 
and second is attributed to relative movement caused by the 

rotor revolving around its axis with angular speed ω: 
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Here R is a radius vector connecting the center of the rotor and 
the contact point. 

Slip speed VT is directed tangentially to the rotor at the 
contact point and could be derived by subtracting from (14) 
the part which is orthogonal to contact surface: 
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Taking into account expressions (11), (12) and (15) for the 
vector of tangential contact force, we can get: 

.)(/)(, ttN TT VVττT =⋅⋅−= µ  

Here µ is the coefficient of sliding friction. 

Thus, we define the formula for the force effecting the 
rotor at the contact point with the retainer bearing: 

.,, zzzyyy TNFTNF +=+=+= TNF  (16) 

The force (16) with point of application in the 
cross-section with coordinate x=xu is accounted for in the 
discrete model of dynamics of the rotor (4) by the vector of the 
generalized forces: 

)).(),...,((

,,

10

00

uKu

T
zb

T
ya

xUxU

FF

=

⋅=⋅=

U

URUR
  

Expressions (11), (12) are elementary linear dependencies 
of forces from speeds and deformations of interacting 
surfaces. The methods used in this paper for accounting for 
such forces in the mathematical model (4) were previously 
applied for cases that are more complex (for example, see 
[12]), so they are easily applied here. 

The tangential component of the contact force (16) creates 
braking torque MT=T R directed at rotation axis. Angular 
speed of the rotor is defined by 

,TCВ MMM
dt

d
I −−=

ω
  (17) 

Here I is the axial moment of inertia, MВ is the turning 
moment and MC  is the moment of resistance. 

 

D. The control system 

The force Fm effecting the rotor from the magnet is defined 
as derivative of magnetic energy concentrated in the clearing 
between electromagnet coil and the rotor by the rotor 
displacement [13]. The force depends on the rotor 
displacement YR and on the current Im flowing through the 
coils of the magnet. The current on its turn depends from the 
control voltage Um supplied to the coils of the AMB magnet 
and on its inductance L and ohmic resistance R: 
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Here L0 is the inductance of the coils of the magnet when the 

rotor is centered. Ψm is full magnetic flux (magnetic linkage) 
in the magnet coils. Gm is the coefficient, which depends on 
the AMB design and materials used. S is the effective 
(magnetic) clearance, which defines the dependency of 
inductance of the coils of the magnet from the displacement of 
the rotor. S0 is the effective clearance, which defines the 
dependency of the force effecting the rotor from the coils of 
the magnet from the displacement of the rotor. 

The control system’s task is to govern the control voltage 
being supplied to the coils of the magnet. 

Initial information used by the control system are the 
displacements of the rotor Yd in the sections where sensors are 
located. The displacements of the rotor are converted to the 
displacement signal Ys taking into consideration sensors 
response time T1: 

 .1 ds
s YY

dt

dY
T =+           

The displacement signal is defined by the sequence Yk – 
sensors being measured periodically with displacement 
sensors’ measuring period T2:  

Yk = Ys(tk),  tk = t0 + kT2 , k = 0, 1, 2, ….                (18) 
Here t0 is time delay used to account for nonsimultaneous 
measurements of the sensors of different AMB. 

The sequence (18) is the starting information for 
generation of the mismatch current I* and the control current 
Icc. When using PID control 

I*(t)=Apr Yk-1 +Bdif (Yk-1 – Yk-2 )/ T2 + 

+Сint T2 (Yk-1 + Yk-2, +…), tk <t< tk+1.            

Icc = I0 + I* or Icc = I0 – I*.    

Here Apr, Bdif and Сint are proportional, differential and integral 
control parameters; I0 is rated operating current in the coils of 
the magnet. 

The control current is constrained: 
if Icc > Imax then Icc = Imax ;                  
if Icc <0 then Icc = 0. 
 

Here Imax is the maximum allowed current in the coils of AMB 
electromagnet.   

The control current is the starting information for 
generation of the control voltage Um being supplied to coils of 
the magnet. The control voltage can have one of the three 
possible values: 0, +Umax, –Umax. 



The algorithm for generating the control voltage is given 
below. 

Turning on (setting Um to either +Umax or –Umax): 
if Rfb*(Im – Icc) < –∆U then Um = +Umax. 
if Rfb*(Im – Icc) >  +∆U then Um = –Umax. 

Turning off (setting Um to 0): 
if Um = +Umax and  Rfb*(Im – Icc)  > +∆U then Um = 0. 
if Um = –Umax and Rfb*(Im – Icc)  < –∆U then Um = 0. 

Here Rfb is the feedback factor measured in Ohms. ∆U is the 
factor describing the dead zone of the control system.  

Therefore, in the model of the control system of AMB we 
have accounted for the following main factors, degree of 
influence of which is to be numerically and experimentally 
studied: 

• Nonlinear dependency of the electromagnetic forces 
from the current in the coils of the AMB magnet and 
from the displacements of the rotor; 

• Difference between the coordinates of the sensors and 
their respective AMB; 

• Inertia of the electromagnets; 

• Discrete nature of reading of the rotor displacement 
sensors; 

• Time delay between generation of the control voltage 
and its supply to the coils of the AMB magnets; 

• Dead zone and hysteresis presence in the control 
system; 

• Limited maximum currents in the AMB coils. 
 

E. Controlling the forces generated by AMB 

The model also allows simulating the ability to control the 
forces from AMB magnets. Nominally, the problem of 
controlling the AMB force is reduced to generation of the 
current Icc in the magnets which, when flowing through the 
coils, generates the force F that obeys desired control law. The 
force F depends on the current in the magnets and on the rotor 
displacement in the cross-sections where AMB are located: 

F= Ф(Icc, y)     (19) 
Specific function Ф(Icc, y) is defined by the design of the 

magnets and the rotor and could be found numerically or 
experimentally. With (19) known we can express the current 
as function of the rotor displacement and AMB force: 

 Icc=Ψ(y, F)                 (20) 
Given measured displacements y the current generated in 

the coils of the AMB according to (20) will lead to generation 
of the desired force by AMB magnets. 

Let us consider the algorithm for generating the control 
current for known dependency of AMB magnet forces from 
the currents in the magnet coils and from the rotor 
displacement [13]: 
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Here L0 is the magnet coils inductance; S0 is the rated 
clearance between the rotor and the AMB magnets; I0 is 
prespecified constant current in the coils.  

From (21) we can derive the dependency of the control 
current form the rotor displacement and AMB force (20): 
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   (22) 

Second line here corresponds to the case of 0≠y . When 

0≈y it is reduced to Icc = – S0
2
F/(4CI0) by substituting (21). 

By utilizing the expression (22) we can set the desired law 
of dependency of electromagnetic force F from the rotor 
displacement. 

 

III. NUMERICAL STUDIES 

To confirm the correctness of the assumptions upon which 
the computer model of dynamics of the rotor on 
electromagnetic suspension is based we used experimental 
data obtained from special stand. The stand has vertical 
heterogeneous rotor on one axial and two radial active 
magnetic bearings having common control system. Rotor 
weight is about 7.5 kg, length is about 0.75 m. Rated clearance 
between the rotor and the stator in the axial AMB is 0.45 mm, 
in the radial AMB 0.3 mm. 

Figures 2 (experimental data) and 3 (numerically 
calculated data) depict the results of hanging out nonrotational 
rotor on the axial AMB starting from the lowest position. 

Figure 4 depicts outer borders of the stability region on the 
plane formed by proportional (axis Apr) and differential 
(axis Bdif) coefficients of PID control of radial AMB for the 
case when all the AMB have the same coefficients. In the 
stability region nonrotational rotor is guaranteed to move 
without contacting the retainer bearings. 

Figure 5 depicts acceleration of the rotor from 0 rpm to 
3600 rpm (Amax is the maximal amplitude of the rotor 
displacement in the upper radial AMB). 

Figures 3 and 4 have thin lines connecting numerical data 
while bold ones connect experimental data. 



 
Figure 2. Experimental vertical displacements of the rotor when hanging out 

on axial AMB from the lowest position. 

 

 

Figure 3. Numerically calculated vertical displacements of the rotor when 
hanging out on axial AMB from the lowest position. 

 

  Bdif  in А s/m 

 

Apr in А/m 

Figure 4. Borders of the stability range for radial AMB for the nonrotating 
rotor. 

Аmax in mm 

 

Angular speed in rpm 

Figure 5. Acceleration of the rotor. Amax is the maxial amplitude of the rotor 

displacement in the upper radial AMB 

 
The difference between numerical and experimental data 

in the range of high frequencies is caused by the presence of 
residual imbalance. 

The comparison of the results shown above as well as in 
verification studies [14, 15] proves the correctness of the core 
assumptions used to design the computer model. 

 
Numerical experiments for emergency modes were 

performed for experimental stand RSM (Rotor Scale 
Model) [16] (Figure 6). RSM is composed by two rotors: the 
generator one and the turbocompressor one which are 
connected by the elastic clutch. Each rotor is supported by two 
radial and one axial AMB. RSM mass is around 1000 kg and 
length around 10 m. Radial AMB retainer bearing radii are 
from 40 to 50 mm, clearance between the rotor and the stator 
in all the retainer bearings is the same and equals to 0.4 mm. 

We have modelled the malfunctions caused by imbalance 
changes, structural deviations of the rotor and by control 
system failures. 

Numerical experiments were conducted for different 
imbalance configurations. In the first case imbalance radii are 
the same for all rotor elements and imbalance directions are 
also the same (one-sided imbalance). In the second case 
imbalance directions are different (multidirectional 
imbalance). 
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Figure 6. Experimental stand of the Rotor Scale Model [16] of 

High-Temperature Gas-Cooled Reactor [1] 

 

Table 1. Amplitudes (in microns), corresponding to 
frequency of 60 Hz, in radial AMB of RSM. 

 AMB 1 AMB 2 AMB 3 AMB 4 

One-sided 
imbalance in 

the RSM 
rotor 

9 8 9 10 

Changed 
imbalance in 
the generator 

rotor 

13 6 9 10 

Oscillation spectrum deformation was observed in radial 
AMB of the generator rotor of RSM. In the AMB 1 
oscillations amplitude corresponding to rotation frequency of 
60 Hz became half again as many (see Table 1). 

 
We have also studied possible malfunctions related to 

change in rigidity of individual elements of the rotor. We 
assumed that failing element of the rotor changes to have a 

spring linkage with its rigidity changing from 108 N m to 
10

3
 N m.  
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Figure 7. Spectrum in the AMB 2 when rigidity changes to 1000 N m. 

 
Figure 7 depicts the spectrum of the rotor oscillations in 

the AMB 2. When rigidity is changed due to presence of the 
imbalance the amplitude of the oscillations increases tenfold 
on the rotation frequency of 60 Hz.  

 
Table 2. Amplitudes (in microns), corresponding to 

frequency of 60 Hz, in radial AMB of the generator of RSM. 

 AMB 1 AMB 2 

Initial rigidity 26 17 

Changed rigidity 34 213 

 
We have also studied the case of failure of the control 

system leading to no generation of the force in one of the 
radial AMB (Figure 8 and 9). 
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Figure 8. Change of the spectrum in the AMB 1 of RSM due to its force 
missing along the radial direction 0y; magenta curve is initial spectrum; black 
curve is disturbed spectrum. 
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Figure 9. The trajectory of oscillations of the generator rotor of RSM in 
AMB 1; magenta curve is before the failure, black curve is after failure. 

Due to interaction with the retainer bearing along the 0y 
axis in the AMB 1 the oscillations have maximum amplitude. 
The frequency in this case shifts to lower range with 
appearance of “rattling”. 

IV. CONCLUSION 

We have developed the computer model of dynamics of a 
multispan flexible rotor on AMB and applied it for composing 
of diagnostic characters of malfunctions caused by: imbalance 
change, rigidity change in one of the rotor elements, change of 
the control system parameters. Conducted numerical 
experiments show the possibility to define the malfunction 
signatures needed by the diagnostic system using the 
developed computer model. 
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