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Abstract— Multiple AMBs have greater bearing capacities than 

two radial AMBs but the multiple AMBs affect the system 

dynamics and control characteristics. The dynamic equations 

were developed for a three radial AMB system to calculate the 

critical speed and the unbalanced response of the three radial 

AMB system which are compared with those of a two AMB 

system. The model accounts for bearing misalignment and the 

effect of different support locations. The model is a flexible rotor 

with discs including a rigid body and Euler-Bernoulli beam 

based on an absolute nodal coordinate formulation and 

constraints based on the first type of Lagrange equation. The 

electromagnetic force on the AMB at each DOF is controlled by 

a PID control law in real time. The governing equations 

including the constraint equations are solved by the available 

differential algebraic equation solver. 

I. INTRODUCTION 

Rotors are normally supported by two radial active 

magnetic bearings (AMBs) in maglev rotating machinery. 

However, multiple radial AMBs are required when the rotor 

is slender such as in aero-engines, large steam turbines, ship 

shafts and helicopter shafts. Multiple AMB systems have 

greater bearing capacity than two AMB systems but the 

dynamics and control characteristics of the system are much 

more complicated.  

Multiple radial AMB systems are statically indeterminate 

systems. DeSmidt et al. [1] used three AMBs to support 

helicopter tail rotors. The system stability was controlled by 

the AMB that suppressed the vibrations caused by the rotor 

imbalance. However, the design neglected the bearing 

misalignment because of the use of a universal joint. Zhao et 

al. [2] and Cai [3] added a third radial AMB to an AMB-rotor 

system, but this bearing only provided damping without 

stiffness. Liu et al. [4-5] added various numbers of AMBs to 

a bearing-rotor system. They first studied the influence of the 

bearing misalignment when the sensor zero position was not 

changed with the magnetic bearing modeled as an equivalent 

spring. Then, a PID controller was used to control the 

linearized electromagnetic force with the responses for step 

and sinusoidal excitation compared when the sensor zero 

position was not changed. They did not investigate the 

influence of the addition of multiple radial AMBs on the 

system controllability and observability or the effect of 

different support locations. 

Unlike with rotors supported by multiple mechanical 

bearings, multiple radial AMB systems can eliminate bearing 

loads caused by bearing misalignment by adjusting the zero 

position of the displacement sensor. However, the equivalent 

bearing stiffness changes with changes in the static balance 

position. However, active controllability makes the rotor 

dynamics analysis much more difficult because the dynamic 

characteristics of the system are closely related to the control 

law. With flexible rotor, even when the controller is known 

and has the simple structure such as a PID controller, the 

closed-loop AMB support parameters cannot be easily 

extracted from the closed-loop transfer function. [6] 

This article considers a three radial AMB system applied 

to a flexible rotor model with discs including a rigid body, 

Euler Bernoulli beam and constraints. The model is based on 

the first type of Lagrange equation. The beam element that is 

based on an absolute nodal coordinate formulation (ANCF) 

allows arbitrary spatial rigid motion, large bending, extension 

and torsion deformation [7]. The electromagnetic force on the 

AMB at each DOF is controlled by the PID control law in 

every calculational step. The effect of the bearing 

misalignment is simulated by changing the static balance 

positions of the objects. The model is used to predict the 

critical speed and unbalanced response for various support 

locations. 

 

II. MATHEMATICAL MODEL 

A. Dynmics equations of the ANCF beam 

The Euler Bernoulli beam elements based on the absolute 

nodal coordinate formulation (ANCF) proposed by Zhao et al. 

[7] are used to model the flexible rotor. This model allows 

arbitrary spatial rigid motion, large bending, extension and 

torsion deformation. As shown in Fig. 1, the Euler-Bernoulli 

beam has a rigid cross section which remains perpendicular to 

the tangent of the centerline during deformation. The 

generalized elemental coordinates, 
eq , and the generalized 

coordinates of nodes Ⅰ and Ⅱ are:  



 
Figure 1.  Euler Bernoulli beam elements based on the absolute nodal 

coordinate formulation (ANCF) 
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Where, r is the global displacement vector of the node, ε  

is the normal strain at the neutral axes and  l m n  is the 

material reference frame. θ are the Euler parameters or 

quaternion which satisfy:   

  
  

  

1

1
e

 
  

  

θ θ
C q 0

θ θ

Ⅰ Ⅰ

Ⅱ Ⅱ
 (2) 

The mass matrix is given by: 
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Where, 

1 0 3 2

2 3 0 1

3 2 1 0
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TJ  is the rotational inertia and 
yyJ  and 

zzJ are the two 

inertias with respect to the two principal axis m and n. L  is 

the initial length,   is the material density and   is the 

isoparametric coordinate. 

The elastic potential work is 
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Where, E  and G  are the elastic and shear moduli. 

1 2 3, ,k k k  are the torsion and the two bending curvatures. 

The resulting governing equations for the ANCF beam are  
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Where,  
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λ  is the Lagrange multiplier vector. 

 

B. Dynamics equations of the rigid bodies 

The position coordinate 
dr  of a rigid body mass center in 

the global coordinate system is defined as the generalized 

coordinate of the rigid body and the unit quaternion 
dθ  is 

defined based on Euler’s rotation theorem. 

Using the derivation of the first type of Lagrange equation, 

the dynamics equation of the rigid body can be expressed as 

[8]: 
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Where 
dM  and 

dJ  are the mass matrix and the inertia 

matrix of the body, 
dF  and 

dQ  are the generalized external 

force and moment, 
dλ  is the Lagrange multiplier, and 

dG  is 

a matrix of the quaternion with the same form as E . 

 

C. Steam turbine rotor model 

A steam turbine rotor supported by three radial AMBs and 

one axial AMB can be modeled using ANCF beam elements 

with different sections and rigid parts as shown in Fig. 2. The 

electromagnetic forces of the AMB at each DOF are applied 

to the red nodes. The axial motion of the rotor is also taken 

into consideration. 

 
Figure 2.  Steam turbine rotor model using ANCF beams and rigid bodies. 

The dynamics equation of the rotor system is then 

obtained based on Eq. 5 and Eq. 6. The governing equations 

are differential algebraic equations (DAEs) which were 

solved using the implicit first-order backward differentiation 

formula (BDF) method. [9] 

 

D. Controller transfer function  

PID control is most commonly used in industry. In this 

model, the electromagnetic force of the AMB at each DOF 

was controlled by a PID control law at each calculational step 

during the solution. The bearing misalignment was e . The 



transfer function for the electromagnetic force and the rotor 

displacement at each DOF is:  

        X S C A IT s k G s G s G s k   (7) 

Where, 
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Xk  is the force displacement coefficient, 
Ik  is the current 

displacement coefficient. 
sA  are displacement sensor gain 

coefficient and ,s aA  is the power amplifier gain coefficient. 

 and s aT T  are the attenuation time constants of the 

displacement sensor and the power amplifier. , ,p i dk k k  are the 

PID parameters.  

Xk  and 
Ik  vary with the static balance position and are 

related to the bearing misalignment as: 
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Where, 
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0s  is the uniform gap in the AMB when the rotor is in the 

ideal center. 
0i  is the bias current.   is the vacuum 

permeability. N  is the number of coil turns. A  is the 

magnetic pole area. 

 

III. SIMULATIONS AND DISCUSSION 

The mathematical model was used to predict the critical 

speed and the unbalanced response of the rotor supported in 

three different ways: 

(a) Two isotropic radial AMBs at A and C.  

(b) Three isotropic radial AMBs at A, B and C 

(c) Two isotropic radial AMBs at A and C with one 

misaligned AMB at B. 

Table 1. Simulation conditions  

Term Value Meaning 

 ( kg m ) 0.001 Unbalanced amount 

 rad  / 3  Initial phase 

 0s m  41.5 10  Gap between AMB and rotor 

 e m  41 10  Misalignment  

Other assumed conditions are listed in Table 1. The steam 

turbine rotor was modeled using 62 ANCF beam elements and 

three rigid parts. The three support points are shown in Fig. 2. 

Nodes 21, 39 and 57 were electromagnetic force support 

points. Node 30, which had the largest disc, was the 

unbalanced quantity.  

The AMB control parameters were the same at each DOF. 

The unbalanced responses of the flexible rotor for the three 

conditions are plotted in Fig. 3 for speeds of 0-4000 rad/s with 

the PID controller. The figures show the steady-state response 

of a node on the rotor in the radial direction at different 

rotational speeds. The physical meaning of the amplitude is 

the distance between the rotor’s axis and its initial position at 

steady state.  

 
(a) Unbalanced response of the rotor for condition (a)  

 
(b) Unbalanced response of the rotor for condition (b)  

 
(c) Unbalanced response of the rotor for condition (c)  

Figure 3.  Unbalanced responses of the rotor for the three support conditions  

The vibrational mode of the rotor can be seen in Fig. 3. 

The flexible mode is almost the same for the three support 



conditions. However, the additional AMB at position B 

changes the rigid mode. The bearing misalignment at position 

B has little effect on the critical speed. 

The rotational speeds corresponding to the peak 

amplitudes are the critical speeds. Each support condition has 

the four critical speeds listed in Table 2. The first two are for 

the rigid modes while the next two are for the flexible modes. 

Table 2. Critical speeds (Hz) 

Type Rigid Flexible 

 
1 2 1 2 

(a) 46.31 76.08 221.9 361.6 

(b) 55.23 83.72 222.7 361.9 

(c) 56.02    84.51 222.8 361.9 

 

Table 2 shows that the flexible critical speeds do not 

change for the three support conditions. In addition, the rigid 

critical speeds of the three radial AMBs systems are higher 

than for the traditional two radial AMB system. The results 

also show that the bearing misalignment at position B has little 

effect on the critical speed.  

The effect of adding an AMB at various support locations 

was investigated by calculating the dynamic response with an 

AMB at various locations. The critical speeds vary with the 

support position as shown in Fig. 4. 

 
Figure 4.  Critical speeds for various suport position  

In Fig. 4, x is the distance between the added support 

point and point A. Thus, 0x  is the traditional two radial 

AMB system. The upper part of Fig. 4 shows the rigid critical 

speeds while the lower figure shows the flexible critical 

speeds. The additional AMB mainly changes the rigid critical 

speeds. The maximum critical speed of the first order mode is 

increased by a maximum of 28.87% while the maximum 

critical speed of the second order mode is increased by a 

maximum of 25.87%. 

The unbalanced response was also evaluated by 

numerically calculating the transient response in the time 

domain of each node on the rotor with two or three radial 

AMBs. The critical speeds of node 21, the node at AMB 

support point A, were found to be 46.31 Hz and 55.23 Hz as 

plotted in Fig. 5. 

 
Figure 5.  Rotor orbit of Node 21 at 55.23 Hz with two and three radial 

AMBs 

The diagrams in the first row of Fig. 5 show that the 

forward whirl radius of the rotor orbit changes with time. 

Node 21 with two radial AMBs tends to steady state after 

about 0.4 seconds. However, node 21 with three radial AMBs 

tends to steady state after only about 0.2 seconds. The stable 

radius of the rotor orbit with three radial AMBs system is 
40.8519 10 m  which is less than the radius of 41.389 10 m  

with two radial AMBs. 

The diagrams in the second row show the rotor orbit with 

the node initially at the origin. At steady-state, the rotor orbit 

tends to a circle because of the isotropic system.  

These results are consistent with the steady state result 

plotted in Fig. 3, which validates the results of the unbalanced 

response calculation. 

The controllability and observability of two, three and four 

radial AMB systems were calculated by Li [10] using the 

Gram matrix. The results show that the controllability and 

observability of the four radial AMB system are superior to 

those of the three radial AMB system with those being 

superior to those of the two radial AMB system for each mode. 

 

IV. CONCLUSIONS 

Models of rotor-bearing systems with two or three radial 

AMBs were developed based on the first type of Lagrange 

equation and a real-time PID controller model using ANCF 

beam elements. The model took into account the time lags of 

the sensors and the power amplifier and the bearing 

misalignment. 



The model was used to predict the critical speed and the 

unbalanced response of a rotor supported in three different 

ways. The results show that adding an AMB to a traditional 

two radial AMB system will change the rigid mode and the 

rigid critical speed. The critical speeds differ for different 

support positions. The maximum critical speed of the first 

order mode is increased by a maximum of 28.87% while the 

maximum critical speed of the second order mode is increased 

by a maximum of 25.87%. Finally, a transient response 

analysis of a node in the time domain validates the results of 

the unbalanced response calculations. 
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