
 

 

Figure 1. Baisc principle of self-sensing active magnetic beargins 

 

Figure 2. Overall block diagram about self-sensing experimen using 

artificial neural network 
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Abstract— Although signal injection, state observer and 

parameter estimation methods were previously studied for self-

sensing AMBs, variety of nonlinear effects such as eddy current, 

magnetic saturation and coil flux leakage make it difficult to 

apply for industrial applications. In this paper, we study a 

position estimation for self-sensing active magnetic bearings 

(AMBs) using artificial neural network (ANN), especially RNN 

method. Mathematical model of self-sensing AMBS are 

introduced including PWM duty, average current, current 

ripple and current slope, and various nonlinear effects are 

investigated quantitatively. We applied ANN method to deal 

with the non-linear effects of self-sensing AMBs. Finally, self-

sensing AMBs using ANN are simulated by MATLAB Simulink 

its performances are compared with previous self-sensing 

methods. 

I. INTRODUCTION 

Since active magnetic bearings (AMBs) have two major 
advantages, non-contact and controllable bearing dynamics, 
AMBs have been applied to vacuum techniques, 
turbomachinery, electric drives, space and physics fields [1]. 
The feature of non-contact allows lubrication free, high speed 
operation and easy maintain while bearing dynamics can be 
adjusted through control gain.  

AMBs are unstable without position control and position 
sensor is essential element for AMBs. However, sensor causes 
cost and size increase and non-collocation problems. 
Therefore, researchers have studied sensorless or self-sensing 
magnetic bearing by using electromagnetic actuator as sensor. 
In detail, target movement changes inductance of the 
electromagnetic actuator and results in variation of the current 
signal due to the driving voltage. The target position can be 
estimated by measuring current signal according to driving 
voltage, as shown in Figure 1.  

Previous studies of self-sensing magnetic bearings are 
classified into three main methods. First one is signal injection 
method. High frequency voltage signal is injected to the 
electromagnetic actuator and the current signal of the actuator 
is measured to estimate the target position through 
demodulation circuit. Second one is the state observer. In this 
method, position is estimated with state observer based on 
control theory [2-3]. Final one is parameter estimation method. 
Position is estimated from current ripple or slope due to PWM 
voltage. Although the last method is more accurate and 
simpler than the other methods, it still has estimation errors 
caused by non-linear properties and PWM duty cycle [4].  
 

In this paper we study position estimation for self-sensing 
AMBs using ANN method, as shown in Figure 2. To make 
experiment simple we use a one DOF SISO AMB system 
based on balance beam. Both current ripple and slope due to 
PWM signal are directly measured with single DSP system 
unlike previous study [5]. Using the DSP system, we 
investigate quantitatively effects of PWM duty, average 
current, current ripple, current slope, and various nonlinear 
electromagnetics such eddy current and hysteresis on the 
position estimation. Then, we implement ANN to accurately 
estimate the position by compensating the nonlinear 
electromagnetics. Finally, effectiveness of the proposed self-
sensing method using ANN is verified by comparison with 
previous self-sensing methods in the simulation.  

II. SYSTEM MODELING AND SIMULATION 

The one DOF SISO AMB system based on balance beam 
and its schematic diagram are shown in Figure 3. Only an E-
shape electromagnet at one side generates force to balance the 
beam. Using the schematic diagram, the motion equation of 
the on DOF SISO AMB system can be expressed as Eq. (1). 
Here, J is the equivalent moment of inertia of the balanced 

beam (
2

0lJ ml J  ) while M is equivalent moment due to 

weight and electromagnetic force (𝑀 =  𝑚𝑔𝑙𝑙 − 𝐹𝑐𝑙𝑐). 
 



 

(a) One DOF SISO AMB system        (b) Its schematic diaggram 

Figure 3. One DOF SISO AMB system and its schematic diagram 

 

Figure 5. PWM signal and current detection method 

∑ 𝐽𝜃̈ = ∑ 𝑀  (1) 
 

Relationship between the angular motion of the balanced 

beam  and the displacement at electromagnetic actuator x can 
be expressed with Eq. (2).  
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Moment due to the electromagnetic force Mc can be 

expressed with Eq. (3).  
 

𝑀𝑐 =  𝐹𝑐𝑙𝑐 =
𝑙𝑐
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Here, β =  
(1+𝑎)
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Detail motion equation of the SISO AMB system can be 
rewritten as Eq. (4).  
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Parameters of the SISO AMB system are summarized in 

Table 1.  

TABLE I.  SYSTEM PARAMETERS 

 Parameter Value 

m Weight 1 kg 

𝑙𝑙 Location of the weight 0.1445 m 

𝑙𝑐 Location to the electromagnet 0.1566 m 

𝑥0 Nominal gap 1.24 mm 

J Equivalent inertia 0.1816 kgm2 

N Number of turns of the coil 118 turns 

𝜇0 Permeability of air 4π × 10−7H/m 

𝐴𝑔 
Cross-section area of 

electromagnet 
226.2 𝑚𝑚2 

 
If the coil of an electromagnet is driven with PWM (pulse 

width modulation) signal, the current ripple is generated 
during switching the coil and dependent on the inductance of 
the coil. Since the coil induction is inversely proportional of 
the air gap, the air gap can be estimated using the current 
ripple [9]. However, the PWM duty should be compensated to 

accurately estimate the air gap since the current ripple depends 
on the inductance as well as the PWM duty. 

The current slope was also used to estimate the air gap 
instead of the current ripple [6]. The current slope is usually 
measured with a separate embedded device such as FPGA. 
Circuit equation for the current can be expressed with Eq. (5). 
 

𝐼̇ =  𝑥̇
𝐼

𝑥+ 𝑥0
+

(𝑥+ 𝑥0)

𝛽
(𝑢 − 𝑅𝐼)  (5)  

Here, u is PWM voltage to drive the coil, R is resistance of the 
coil and I is current of the coil. 
 
 Approximate current profile due to the is PWM is shown in 
Figure 5. We need to detect current at several points during a 
cycle time, as shown in Figure 5. That is why we need a 
separate embedded device to detect the current slope.  
Since PWM voltage u is 𝑉𝑑𝑐, we can rewrite Eq. (5) as Eq. (6) 
using displacement x.  
 

(𝑥 + 𝑥0)2 =  
𝛽

𝑉𝑑𝑐−𝑅𝐼
((𝑥 + 𝑥0)𝐼̇ − 𝐼𝑥̇) (6) 

 
We can discretize Eq. (6) as Eq. (7). If the current and current 
slope are know, we can estimated the air gap without the 
PWM duty ratio.  
 

𝑥𝑛 =  
𝐼

𝑇𝑠
𝑥𝑛−1+(𝐼̇−𝐾)𝑥0

𝐼
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Here, 𝐾 =  𝛽𝑥0(𝑉𝑑𝑐 − 𝑅𝐼) and Ts is sampling time. 
 

We build a simulation model, as shown in Figure 6. The 
simulation model consists of PID controller, SISO AMB 
system with an electromagnetic actuator, gap estimator based 
on the current slope. The simulation model works and PWM 
signals are generated based on 20kHz counter. In addition, the 
current slop is calculated using compare-operation and S/H 
(sample and hold).  
  

III. RNN MODEL AND SIMULATION RESULT 

A. RNN for air gap estimation  

We construct RNN model for air gap estimation, as shown 
in Figure 7. Current, current slope, PWM duty and estimated 
gap with the current slope are input for RNN.   



 

Figure 6. Simulation block diagram for air gap estimation  

 

Figure 7. Structure of RNN for air gap estimation  

 

Figure 8. Input trainning data set for the RNN 

 

Figure 9. Air gap estimation by the current slop and the RNN 

 

Figure 10. Estimation error by the current clope and the RNN  

 

 
We made a RNN with 10 hidden layers and a hyperbolic 

tangent function was used as an activation function. To 
minimize a cost function or sum of square of estimation errors 
of the air gap, we use an adam(Adaptive moment estimation) 
optimization algorithm with the learning rate of 0.1.  

We controlled the SISO AMBS feedback to the real air gap. 
And 0.2 mm amplitude, 2π rad/s frequency sine wave was 
used reference input. We got the 5000 data with 5kHz 
sampling frequency and put 4 set of data which are current, 
current slope, PWM duty, and estimated gap with slope, into 
the RNN model as like Fig 8. Total iteration is 1000 time and 

one set of data is consisted of 10 previous time data.  
Parameters for RNN and its training are summarized in Table 
2. 

 

TABLE II.  PARAMETERS FOR RNN 

Parameter Value 

Number of data sets 5000 

Number of input data 4 

Iteration 1000 

Fully connected size 10 

Sequence length 10 

 

B. Simulation results 

Air gap estimated by the current slope and the RNN are 
compared with real air gap, as shown in Figure 9. The RNN 
shows better performance of the air gap estimation than the 
current slope. In addition, the estimation errors of current 
slope and RNN are compared in Figure 10. In particular, the 
RNN has much better estimation performance at large air gap 
than the current slope since the PWM duty ratio is considered 
as training input. Moreover, the RNN has smaller noise in 
estimated signal the current slope.   
 

 

 

IV. CONCLUSION 

We designed ANN, specifically RNN model, to get the 
estimated air gap. We used the Current, Current slope, PWM 
duty, and estimated air gap with slope that come from the 
simulation based on the mathematical model of SISO AMBS, 



as input data to RNN model. We can reduce the estimated air 
gap error by considering the non-linear effect of AMBS, 
especially PWM duty ratio. RNN model was compared with 
the previous self-sensing method, current slope method, using 
step response. For future study, we will design some kind of 
filter to reduce a range of noise and revise and study RNN 
model to improve performance of estimation. Finally we will 
implement the RNN model to real system with DSP.  
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