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Abstract—This work presents a step-by-step procedure on how 

to get the reluctance forces in the optimal three-pole magnetic 

bearing. These forces are analyzed near the equilibrium point, 

where linearization produces satisfactory results. Besides that, a 

linear dynamical system is proposed based on the operation 

under four types of disturbances, shaft with constant angular 

speed and small displacements over the center. 

I. INTRODUCTION 

 

Active magnetic bearings are devices that allows a shaft to 

have contactless support in a rotation machine. They can be 

built in many different sizes and configurations, being the 

most common the 8-pole configuration. However, as pointed 

out in [1], the minimum number of poles that allow 

generation of reluctance forces in two dimensions is three. In 

comparison with other types, three-pole magnetic bearings 

are suitable to compact devices, as they have more space 

between poles allowing better heat dissipation, sensor 

installation and also less coil winding. 

Chen and Hsu proposed in [2] an optimal design for the 

three-pole active magnetic bearing, optimizing the cupper 

loss and reducing the number of amplifiers to two. He also 

found the relation between winding thickness and pole width 

that give best results. 

In [3], Hsu and Chen presented a feedback linearization of 

the nonlinear voltage-controlled system, changing variables 

to consider the magnetic fluxes as part of the states. In [4], 

the same authors study and compare linear and nonlinear 

control techniques. They simulated the state-space feedback 

control alone, feedback linearization with state-space 

feedback and finally feedback linearization with integral 

sliding mode control. 

In [5], Chen et al. validate the control techniques presented 

in [4] with experimental tests that were made with and 

without motor in the shaft. Linear and nonlinear techniques 

were used. In [6], Meeker and Maslen proposed a new model 

to the reluctance forces with the aim to facilitate to use a 

three-phase motor drive. 

Chen, in [7] proposed a robust voltage-controller via 

backstepping, with two stages of integral sliding mode 

control. More recently, Kiani et al proposed in [8] a hybrid 

control as a nonlinear control option for the three-pole 

magnetic bearing configuration and Chen, in [9], presented a 

sensorless smooth control technique, where the displacements 

of the rotor are estimated by electrical sensors, allowing 

reduction of costs. 

This study comes to show a detailed look at the reluctance 

forces that appear in the three-pole configuration, as well as 

the linearization by Taylor expansion series in order to 

analyze their behavior near the equilibrium point. Using a 

similar procedure presented in [10] and [11], with the 

linearized forces information, a linear dynamical system was 

modelled considering four types of external disturbances on 

the system. 

II. MODELLING OF MAGNETIC CIRCUITS AND 

MAGNETIC FORCES 

 

In order to obtain the magnetic force equations of the 

three-pole magnetic bearing, it is necessary to analyze its 

magnetic circuit. Fig. 1 illustrates the axial view of the 

magnetic bearing that will be studied and the magnetic flux 

path that was created due to the current applied in one coil. 

The area of each pole is Ac, the air gap between the stator and 

rotor is h and the magnetic constant µ0 = 4π.10-7 H/m. 

 

Figure 1.  Indication of the magnetic flux path due to application of current 

in the windings of coil in pole 1. 

To analyze the total magnetic flux path created by the 

windings, it is necessary to analyze them separately and, in 

the end, add them up to see the result. It is used the right-hand 



rule to find the direction of the magnetic field caused by a 

current in a wire. Naming the poles and coils from 1 to 3 in 

the counterclockwise direction (beginning from the pole at 0º) 

and using the notation ϕik to indicate the flux that cross the 

gap in the ‘i’ pole due to the current from the coil ‘k’, Figures 

2, 3 and 4 shows the flux generated by each current. It is 

important to notice that in this paper the current i2 is modelled 

with opposite direction than the currents of the other two 

coils.  

 

Figure 2.  Indication of the magnetic flux path due to application of current 

in the windings of coil in pole 1. 

 

Figure 3.  Indication of the magnetic flux path due to application of current 

in the windings of coil in pole 2. 

 

Figure 4.  Indication of the magnetic flux path due to application of current 

in the windings of coil in pole 3. 

With notation ϕi representing the total flux crossing the 

pole “i”, with positive sign pointing to the center of the rotor, 

as indicated in Figure 5, and considering that the system 

doesn’t suffer any air and ferromagnetic losses, the total 

magnetic flux in each pole is given by equations (1), (2) and 

(3). 

 

Figure 5.  Indication of the total magnetic flux in each pole. 

 
(1) 

 
(2) 

 
(3) 

Given that nc is the number of turns in each coil, ij and Fj 

is, respectively, the current and magnetomotive force in the 

“j”th pole, the magnetomotive force is given by equation (4), 

and the reluctance by equation (5): 

 
(4) 

 

(5) 

The equivalent magnetic circuit corresponding to the coil 

1, is shown in Figure 6. 

 

Figure 6.  Magnetic Circuit Associated with coil 1. 

The expressions obtained is given by equations (5) to (8). 

 
(5) 

 

(6) 

 

(7) 



 

(8) 

In which the variable N is given by the equation (9). 

 
(9) 

Similarly, as above, the diagram corresponding to coil 2 is 

shown in Figure 7 and the corresponding expressions in 

equations (10) to (13). 

 

Figure 7.  Magnetic Circuit Associated with coil 2. 

 
(10) 

 

(11) 

 

(12) 

 

(13) 

Finally, for coil 3, the magnetic circuit is given by Figure 7 

and the expressions in equations (14) to (17). 

 

Figure 8.  Magnetic Circuit Associated with coil 3. 

 
(14) 

 

(15) 

 

(16) 

 

(17) 

To obtain the complete expression of the flux ϕ1, the terms 

in the right-hand size of equation (1) were replaced to the 

ones presented in equations (6), (11) and (15). Doing the 

same for the other poles, the expressions of total flux in 

function of the reluctance and currents in the coils are given 

by equations (18) to (20). 

 
(18) 

 
(19) 

 
(20) 

As expected, the sum of all three fluxes is zero, due to the 

magnetic flux conservation in a closed path. With the help of 

the right-hand rule to find the flux direction when there are 

currents in all three coils, the result is shown in Figure 9.  

 

Figure 9.  Flux direction resulted by the three currents in the coils. 

The reluctance forces have the same direction of the 

magnetic flux and absolute values proportional to the square 

of each magnetic flux. As cited in [2], by Amperes-law and 

principle of virtual work, the formula for each force is given 

by equation (21). These forces are always attractive, as shown 

in Figure 10.  

 

Figure 10.  Reluctance forces associated with each pole. 

 
(21) 

In steady-state the rotor operates at the equilibrium point 

and the resulting force is zero. Due to the three forces being 

separated by each other 120º, in steady-state operation it is 

necessary that all forces have the same module. For this 



situation to occur, from equation (21), the magnetic fluxes 

must have the relation (ϕ1)2=(ϕ2)2=(ϕ3)2. 

In the three-pole magnetic bearing heteropolar 

configuration the magnetic flux of one pole will always be 

the sum of the other two, in this example, (ϕ2)2=(ϕ1+ϕ3)2 and 

therefore it is not possible for the equilibrium condition to be 

satisfied. Even if only two coils are used, the asymmetry of 

the configuration does not allow that the forces cancel each 

other. This rule out the use of the three-pole magnetic bearing 

in the upright position, in which the rotor needs to maintain 

equilibrium only by the reluctance forces. 

However, with the magnetic bearing being placed in the 

horizontal position, the gravity force will act radially in the 

system and compose its resultant force, it is feasible to think 

about a certain orientation angle θ in which all forces can 

cancel each other. The Figure 11 shows the magnetic bearing 

in an arbitrary orientation and all three reluctance forces are 

decomposed in horizontal and vertical component, fx and fy 

respectively. 

 

Figure 11.  Magnetic Bearing in an arbitrary orientation angle, with the three 

reluctance forces decomposed in horizontal and vertical components. 

The horizontal force fx is the sum of each horizontal 

component of the force, and fy is the sum of each vertical 

component, as shown by equations (22) and (24). Replacing 

each force using the equation (21), one can find the 

expressions in function of the corresponding magnetic fluxes, 

given by (23) and (25). The main objective with this 

operation is to find a relation between the input currents and 

the output reluctance resultant force.  

 
(22) 

 
(23) 

 
(24) 

 
(25) 

When small displacements of the rotor occur, let’s say of x 

units in horizontal and y in the vertical, the corresponding 

reluctances are given by equation (26) to (28). 

 

(26) 

 

(27) 

 

(28) 

The coils currents can be separated in two terms, given by 

equation (29). One term is the base current (I0j), responsible 

to provide the largest part of the magnetic flux that 

guarantees the equilibrium in steady state. The other term is 

the differential current (idj), that is important especially during 

transient or dynamic changes, these parcel help to adjust the 

reluctances forces necessary to centralize the rotor.  

 (29) 

In [2] this problem was presented and is shown that the 

orientation angle that allow to reduce the number of 

amplifiers from three to two and still maintain the system’s 

stability during transient is θ = π/6. The Figure 12 shows the 

magnetic bearing in the called “optimal orientation angle” 

with indication of the reluctance forces and the gravity force, 

and Figure 13 shows the path made by the magnetic flux. 

 

Figure 12.  Force diagram for the magnetic bearing in the optimal orientation 

angle, that allows only one amplifier for coils 1 and 2. The situation pictured 

should occur in steady state operation. 



 

Figure 13.  Magnetic flux path when the stator is oriented in the optimal 

orientation angle. The situation pictured should occur in steady state 

operation. 

Using the information θ = π/6 in equations (26) to (28), the 

reluctances are given by equations (30) to (32). 

 

(30) 

 

(31) 

 

(32) 

Using this value of theta in equations (23) and (25), the 

horizontal and vertical forces are given by equations (33) and 

(34). 

 

(33) 

 

(34) 

To find the complete expressions of fx and fy as function of 

the input currents, it is necessary to replace the reluctances 

found from (30) to (32) in equations (18) to (20), and finally 

replace them in (33) and (34). The results are very 

complicated multivariable nonlinear formulas, given by 

equations (35) and (36). 

 

(35) 

 

(36) 

In which the terms qx and qy are shown in equation (37), 

the variable Δ is shown in equation (38) and the terms N1 and 

N2 in equations (39) and (40), respectively. 

 

(37) 

 
(38) 

 

(39) 

 

(40) 

The region of analysis is near the equilibrium point P0 = (x, 

y, id1, id3) = (0, 0, 0, 0) so it is reasonable to linearize the 

equations (35) and (36) by Taylor expansion series and 

evaluate at the equilibrium point. The result of the 

linearization is shown in equations (41) and (42). 

 

(41) 

 

(42) 

 And the terms kp and ki are given by the expressions 

(43) and (44): 

 

(43) 

 

(44) 

III. MECHANICAL DYNAMICS 

 

As was showed in section before, the three-pole magnetic 

bearing can’t be used in the upright position. So, to analyze 

the mechanical dynamics it is considered the systems as 

pictured in Figure 13, where the gravity has radial action in 

the system, the z-axis is axial to the rotor and the extremity of 

the shaft in the origin is supported by an axial bearing. 



 

Figure 14.  Three-Pole magnetic bearing geometry and orientation in a 3D 

axis. 

In an ideal situation, the rotor center coincides with the z-

axis. However, due to external factors, they don’t coincide, 

and it is necessary to analyze its operation under 

perturbations and external factors. Figure 15 shows the 

situation, from view 3, where the axis is operating with 

displacements of xb units in horizontal and yb units in the 

vertical. 

  

Figure 15.  View 3. Horizontal and vertical displacements of the rotor. 

Using the same formulation presented in [10] and [11] it is 

possible to analyze the spatial dynamics as two 2D coupled 

movements, one rotation around the y-axis and other rotation 

around the x-axis. Due to symmetry, the torque in y axis is 

equal to torque in x axis and will be named J. 

Analyzing separately only the movement around the y-

axis, as shown in Figure 16a, Eβ is the angular moment 

related to this movement and the torque contribution from x 

axis is zero, so the rotational dynamic is presented in equation 

(45). Similarly, the rotation movement around the x axis is 

presented in Figure 16b, with Eα being the angular movement 

associated and the rotational dynamic given in equation (46). 

 

 

Figure 16.  (a) View 1 (b) View 2. 

 

(45) 

 
(46) 

These two equations can be written in vector form, as 

equation (47). 

 
(47) 

Where p, G and E are given by equation (48) 

 

(48) 

The vector E represents the torques caused by external 

factors. In this paper are considered the torques coming from 

the following excitations: Magnetic (Em), Gravitational (Eg), 

Supporting Bearing (Ea) and Mass Unbalance (Ed). So, E can 

be expressed by equation (49). 

 (49) 

The Magnetic excitation come from the torque generated 

by the magnetic forces given in equations (41) and (42). 

Considering that α and β are small angles and l is the size of 

the shaft, the magnetic excitation is given by equation (50). 

 
(50) 

The term Em and u are defined by (51), Pβ and Pα are the 

torques associated to the y-axis and x-axis, respectively. 

 

(51) 

The rotor is positioned in a way that the gravity acts 

radially, so the weight produces torque only around the x-

axis, as shown in Figure 17. Considering the center of mass 

of the system located h units from the origin (ideally, h = l), 

the torque would be given by mg cos(α)h ≈ mgh. So, the 

Gravitational excitation is given by equation (52).  



 

Figure 17.  (b) View 2, showing the action of gravity force in the system. 

 

(52) 

The axial bearing has viscous damping, with the torques 

being proportional to the displacements’ angular velocities in 

each axis. The supporting bearing excitation (Ea) is given by 

equation (53), given that Ca is a constant. 

 

(53) 

Identically as described in [10], where variable m 

corresponds to the value of a small mass placed in the rotor 

causing unbalance, q is a factor, 0 < q < 1, that measures how 

distant the mass is from the radius r of the rotor and the 

angular speed is ω. The mass unbalance excitation (Ed) is 

given by equation (54). 

 

(54) 

Replacing the equations (50) to (54) in (49), and then in 

(47), the rotational dynamic can be written in equation (55). 

 

(55) 

Defining the vector ps with the components xs and ys 

measured by the sensors, in which xs = βd and ys = -αd, d ≠ 0, 

with d being the distance from the origin to the sensor. The 

relation between ps and p is given by equation (56). 

 

(56) 

With some algebraic manipulations, it is possible to 

rewrite equation (55) in terms of ps, shown in equation (57). 

 (57) 

Where the terms Ge, Ke and kj are explicit in equations 

(58), (59) and (60). 

 

(58) 

 
(59) 

 
(60) 

Furthermore, considering the state vector x as pointed in 

equation (61), with its states being the positions measured by 

the sensors and its derivatives. 

 
(61) 

Deriving equation (61) and using the information from 

equation (57) gives the dynamical equation: 

 
(62) 

In which the terms A(ω), B, k(ω,t) is given by: 

 

(63) 

 

(64) 

And I2 is the 2x2 identity matrix and 02 is the 2x2 zero 

matrix. Fixing the analysis in one constant angular speed (ω), 

the matrix A(ω) become constant, A, and k(ω,t) (a disturbance 

in the system) become only dependent of time, k(t). So, 

equation (62) can be rewritten as: 

 
(65) 

For small displacements of the rotor, the output of this control 

system are the reluctance forces given by equation (41) and 

(42), here written in vector form: 

 

(66) 

The x and y variables from equations (41) and (42) can be 

replaced by xs and ys, so f is given by: 

 

(67) 

And after few manipulations results in the expression: 

 (68) 

Where C and D are given by: 

 

(69) 

The block diagram of the linearized system, corresponding to 

the state-space equations (65) and (68), is shown in Figure 

18. Due to linearization, this block diagram is valid only near 

the equilibrium point, i.e., for smalls values of axis 

displacement.  



 

Figure 18.  Block Diagram of the Linear Dynamical System from the Three-

Pole Magnetic Bearing Model. 

Linear Control techniques can be used to find the input 

currents u that best meet the control needs, especially 

regarding the stability of the rotor, preferably with the 

minimum power consumption. 

IV. COMMENTS AND CONCLUSION 

 

A detailed look at the linearized model for the three-pole 

heteropolar magnetic bearing was presented. Although the 

reluctances forces have strong nonlinear behavior, near the 

equilibrium point the linearization is a valid technique to 

analyze the relation between the input control currents and 

the output forces. 

Furthermore, real systems are subjected to external 

disturbances that may influence its dynamical behavior. This 

study also presents a state-space representation of the system 

considering four types of external disturbances, under the 

conditions that the rotor has constant angular speed and small 

displacements over its axial direction. The control problem 

for this system will be studied in a future work.  
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