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Abstract—As one of the key components of a rotating machinery, 
the bearing has a significant effect on the dynamic response of 
the system. Compared with traditional mechanical bearings, the 
magnetic bearing has many advantages such as no contact and 
friction, no need of lubrication, no wear, low noise, high 
rotational speed, etc. Therefore, the magnetic bearing is an ideal 
support for rotating machinery, i.e. a maglev water pump. 
During the modeling and simulation the magnetic bearing, it is 
usually simplified as a spring-dampers with equivalent stiffness 
and damping, which ignore the dynamic characteristics of the 
magnetic bearing. Besides, the study of simulation mainly 
focuses on the vibration reduction of the rotor or the vibration 
transfer to the base, while little was known about the dynamic 
response of the maglev machinery system on a moving base. In 
this paper, a time-domain rigid-flexible coupling simulation 
model of a maglev water pump on a moving base is established 
by using multibody dynamics method. In this model, the flexible 
rotor is simplified as several discrete rigid parts connected with 
massless beam force and the control system of the magnetic 
bearing with PID controller is realized by utilizing state space 
equations. Then the dynamic response of the maglev water 
pump on a pitching and rolling base was obtained based on the 
established model. 

I. INTRODUCTION 

Vibrations and noise are unavoidable when the rotating 
machinery running, which cause many problem, for example, 
the vibration will reduce the mechanical efficiency and 
service life, the excessive noise can affect operator's health. 
Therefore, decreasing the vibration and noise of the rotating 
machinery is a vital requirement. 

Bearing, as the indispensable key components for rotating 
machinery, is not only the major vibration excitation source, 
but also the main vibration transmission path, therefore its 
mechanical characteristic has a significant influence on the 
vibration generation and transmission of rotating machinery. 

Traditional mechanical bearing is widely used in rotating 
machinery, however, mechanical bearing produces large 
rotational resistance and cause vibration and noise because of 
the contact and friction, so designing and selecting a suitable 
bearing has become a significant work in the design of 
rotating machinery. 

Active magnetic bearing is an ideal support component, in 
which make the rotor suspend stably in space by a magnetic 
force with feedback control. Because that there is no contact 
and friction between the rotor and bearing, and it has some 

advantages in comparison with conventional mechanical 
bearings, e.g. no need of lubrication, no wear, low noise, high 
rotational speed. Therefore, magnetic bearing has a wide 
application prospect in rotating machinery. 

In the past research, during the mechanics simulation of 
magnetic bearing, the magnetic bearing was substituted by 
spring-dampers with equivalent stiffness and damping[1, 2], 
which is often leads to inaccurate results due to ignoring the 
influence of the dynamic characteristics of magnetic 
bearing[3]. 

As shown in Fig.1, a maglev water pump normally 
consists of a rotor, a stator, a pump, a five-degrees of freedom 
magnetic system which is composed of two radial and one 
axial magnetic. The control system of the magnetci bearing 
comprises controller, sensor and power amplifier. The 
mechanical part of the maglev water pump is a typical 
complex multibody dynamics system, therefore, multibody 
dynamics method is used to establish the dynamics 
simulation model of the maglev water pump in this 
paper, .and the control system of the magnetic bearing with 
PID controller is described by utilizing state space equations. 

II. DYNAMIC MODEL 

In multibody dynamics method, the mechanical system is 
divided into several rigid parts or flexible parts according to 
the mechanical behaviors, then the mechanical system can be 
simulated by applying joints, forces or contact between each 
parts. Compared with finite element method, multibody 
dynamics method has higher accuracy and speed with fewer 
degrees of freedom so that it is widely used to simulate the 
kinematics and dynamics of complex mechanical system.In 
this section, the dynamics equations of the system will be 
given, with particular focus on the rotor and control system of 
the magnetic bearing. 

A. Rigid-Flexible coupling model of rotor 

To simulate the flexible characteristics of the rotor, the 
rotor was discretized into as a series of lumped masses 
connected with each other by massless flexible beams, as 
shown in Fig 1. The mass and inertia of the rotor can be 
described by these lumped masses, meanwhile, the elastic and 
damping characteristics can be simulated by the connected 
massless beam segments. 

 



 
Figure 1.  Rigid-flexible couping model of maglev water pump 

Taking the center position coordinates T[ , , ]b x y zr in the 
global coordinate system and the normalized quaternion 

T
0 1 2 3[ , , , ]b    λ based on Euler’s rotation theorem as the 

generalized coordinate of rigid body: 
 T[ , ]b bq r λ   (1) 

And the normalized quaternions bλ satisfies the following 
constraints: 
 T= 1b b λ λ   (2) 

Assume that there are cn  constraints in the system, the 
constraint equations can be expressed as: 

 1 2( , , , , ) 0 1,2, ,k n ct k n  q q q    (3) 
Apply Lagrange equation of the first kind, the governing 

equations of the rigid bodies can be obtained as[4] 
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Where iM  is the mass matrix, T
, ik qΦ  is Jacobian matrix of 

the constraint function. i is the corresponding Lagrange 

multiplier. iQ  is generalized force vector relates to the 

generalized velocity. iP  is the generalized external forces 
vector. 

For the rotor, the generalized external forces include the 
generalized force g

iP  of the gravity g
iF  and the generalized 

force e
iP of the elastic beams. 

Based on the principle of virtual work, the generalized 
force g

iP  of the gravity can be written as: 
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In this paper, the stiffness matrix of the massless beam 
obtained according to the Timoshenko beam theory and the 
damping is decoupled as Rayleigh damping. Then the linear 
translational and linear rotational force acted on the Mass I by 
Mass J is depends on the displacement r  and rotation θ  
and velocity of Mass I relative to Mass J: 
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Where K  and C  is the stiffness and damping matrix. 
Based on the relationship between the variation of 

quaternions and virtual rotation, the virtual work of the beam 
force is: 
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Then the generalized external force acted on Mass I can 
be written as: 
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Where T
iG  is the force-mapping matrix. is is the vector of 

the application point of force b
iF in the body frame of Mass I. 

Similarly, the generalized external force acted on Mass J is: 
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B. Mechanics simulation of magnetic bearing 

 
Figure 2.  Principle of magnetic bearing 

Take the single degree of freedom magnetic bearing 
model shown in Fig. 2 as an example, the electromagnetic 
force of magnetic bearing with differential electromagnetic 
structure is:  
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Where 7 24 10 N/A   is the permeability of vacuum, A is 
the cross-section area of magnetic pole, N is number of 
windings in each magnetic pole, 0I  is the bias current, 0i  is 
static bias current that produce electromagnetic force to 



overcome gravity at equilibrium position, ci  is the control 

current, 0  is the air gap of magnetic bearing. Linearizing 

Eq.(10) at the equilibration position( 0, 0cx i  ): 
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Where ik  and xk  are the current stiffness coefficient and 
displacement stiffness coefficient respectively.  

Since 2
0 0( / ) 1i I  , xk  can be simplify as:  
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Different control strategies are applied to make the rotor 
suspend stably for the magnetic bearing, such as PID control, 
robust control and adaptive control. The most common is PID 
control because of its conception is clear and arithmetic is 
simple. The whole control system consists of PID controller, 
sensor and power amplifier. 

 

Figure 3.  Block diagram of a magnetic bearing with PID controller 

The block diagram is shown in Fig.3. The transfer 
functions of the PID controller ( )cG s , sensor ( )sG s  and 

power amplifier ( )pG s  are: 
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Where pK , iK , dK  are the proportional, integral and 

derivative coefficients, respectively. iT , dT  are the integral 

and derivative time parameters. sA , sT  are the sensor gain 

and time parameter. pA , pT  are the power amplifier gain and 

time parameter. Ignoring the influence of sT  and pT , then the 

equivalent stiffness and damping coefficient of the magnetic 
bearing are[5]: 
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Where   is the controller frequency and usually replaced by 
rotor rotating frequency, which is often leads to inaccurate 
results due to ignoring the influence of the dynamic 
characteristics of magnetic bearing. 

In this paper, the state space equations were used to 
describe the transfer function of the controller: 
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Where A  is the state matrix, B is the input matrix, is 
C the output matrix, D is the feedthrough matrix, x  is state 
vector, y  is the output vector, u  is the control vector. 

The transfer function of magnetic bearing with SISO 
control system can be written as: 
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The state vector can be set as the displacement of the rotor 
and its derivatives: 

 (n 1) T[ , , ]q q q x     (17) 
Then the matrix expressions of the state space equations 

is[6]：  
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Similar to the generalized external force expressions of 
beam force, the generalized external force acted on Mass I 
(on the rotor) and Mass J (on the stator) can be written as: 
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C. Governing equations of the system 

The governing equations of the system are obtained by 
combining Eq.(4) and Eq.(15): 
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The solution scheme was shown in Fig.4. The governing 
equation form a set of differentialtion and algebraic equations, 
which can be solved by the implicit backward differentiation 
formula (BDF) method, and detailed solution scheme can be 
found in literature [6] and [7]. And the multibody dynamics 
simulation model of a maglev water pump was shown in 
Fig.5. 



 

Figure 4.  Solution scheme of the governing equation 

 

Figure 5.  Multibody dynamics model of Maglev Water Pump 

III. VALIDATION OF SYSTEM SIMULATION MODEL 

A. gyroscopic force of the rotor 

As shown in Fig.6, a circular-section rotating beam 
supported at the left end and free at the right end undergoses 
an impact force at the free end. According to literature [8] 
and [9], if the rotate angular speed is smaller than its first 
bending frequency(7.1 cycle/s), the vibration of the free end 
will attenuate because of the damping, and if it is larger than 
this speed, the vibration of the free end will produce a limit 
cycle under the effects of the gyroscopic effect. The 
simulation results shown in Fig.7 and Fig.8 indicate that the 
established rigid-flexible coupling rotor model can accurately 
simulate the dynamic characteristics of the rotor. 

 

Figure 6.  Rotation beam undergoes an impact force 

 

Figure 7.  Trajectory of the free end when the rotating speed 7.0 cycle/s 

 

Figure 8.  Trajectory of the free end when the rotating speed 7.2 cycle/s 

B. Simulation verification of the magnetic bearing 

In this section, the accuracy verification of the magnetic 
bearing with PID controller was carried out. A single degree 
of freedom (SDOF) magnetic bearing system shown in Fig.2 
was established. Assuming the excitation acted on rotor is: 
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And 1 1 2 2 3 310, / 6, 50, 0, 100, / 6f f f           .  
Because the excitation has different frequency 

components, the equivalent stiffness and damping coefficient 
of the magnetic bearing is obtained as setting =50Hz , the 
parameters of the magnetic bearing is shown in Tab.1. 
According to Equ.(14), the equivalent stiffness and damping 
coefficient are 5.779 ×106 N/m and 1.359 ×10

4 N/ms-1, 
respectively. To sufficient verify the correctness of the 
proposed model, A same simulation model was established 



by Simulink, the simulation block diagram was shown in 
Fig.9.  

Table 1. Parameters of SDOF magnetic bearing 

Parameters Value 
Mass of rotor 50 kg 
Proportional coefficient 0.25 
Integral coefficient 5 
Integral time 1.5915 
Derivative coefficient 0.001 
Derivative time 0.0016 
Displacement stiffness coefficient, xk  8.9×105 N/m 

Current stiffness coefficient, ik  133 N/A 

Sensor gain, sA  3.33×104 V/m 

Power amplifier gain, aA  4 A/V 

 

Figure 9.  Controller system by Simulink 

The comparison of simulation results of these three 
methods was shown in Fig.10. It is found that the simulation 
results obtained by the method proposed in this paper is 
entirely consistent with Simulink and is significant different 
with equivalent stiffness and damping model. It is because 
that the equivalent stiffness and damping of the magnetic 
bearing is connected with  , In practical engineering,   is a 
set of a number of frequency, therefore, using rotor rotating 
speed to substitute   can cause a certain calculation errors. 

 

Figure 10.  Comparison of simulation results of different models  

IV. DYNAMIC SIMULATION OF MAGLEV WATER PUMP ON 

A MOVING BASE 

A. Time-domain motion of the base 

Currently, during the design and development process, it is 
often assumed that the base is fixed, which is reasonable in 
most cases, but when the base is moving, the inertial force and 
moment produced by the movement of the base motion will 
influence the dynamic response of the system. In this section, 
the harmonic displacement excitation of the base is considered 
to research this influence and evaluate the safety of the maglev 
water pump. The harmonic displacement excitations for the 
maglev water pump on a pitching or rolling base were 
assumed as: 

 ( ) sin 2x t D ft   (22) 

Where D
6


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1
=

3
f are the angle amplitude and the 

frequency of the rolling or swing, respectively.  
 

 
Figure 11.  Controller system by Simulink 

The rotor residual unbalance is one of the main excitation 
that cause the vibration of the system, the force caused by the 
unbalanced mass of rotor is applied on the mass center of rotor 
as excitation. Moreover, the Maglev Water Pump was 
suspended on the base through four flexible BE-120 supports 
that simplified as spring-damper with equivalent stiffness and 
damping. 

B. Result and Discussion 

Fig.12 shows the relative motion comparison of the front 
and back magnetic bearings between the maglev with fixed 
and moving base under harmonic displacement excitation. 
From the results, it can be found that the movement of the 
base results in an increase in the maximum relative 
displacement of the rotor. Compared with the rolling motion, 
the maximum relative displaceent under pitching motion is 
larger than fixed base because that the relative velocity 
between the rotor and two magnetic bearing is larger when the 
base start pitching movement, which increasing the contact 
risk between the rotor and magnetich bearing. 



 

Figure 12.  Relative motion comparison of the front and back AMBs. 

V. CONLUSION 

A rigid-flexible coupling simulation model of maglev 
water pump is established by using multibody dynamics 
method. 

In this model, the flexible rotor is simplified as several 
discrete rigid parts connected with massless beam force; the 
control system of the magnetic bearing with PID controller is 
descriped by state space equations to properly simulation the 
dynamic characteristics of the control system and the 
nonlinear electromagnetic force of the magnetic bearing. 

Then the dynamics behaviors of a maglev water pump 
suspended on a moving base were obtained based on this 

simulation model. It is found that the maximum relative 
displacement under pitching motion is larger than rolling 
motion. Therefore, when the pump needs to be mounted on a 
moving base, it is necessary to consider the influence of the 
base motion, especially pitching motion. 

The simulation method proposed in this paper provides an 
effective simulation method for the dynamics simulation and 
design of other types of rotating machinery with magnetic 
bearing. 
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