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Abstract—This paper explores a design method of the filter 

cross-feedback for nutation mode suppression of AMBs-rotor 

systems. The derivation of a multiple-input-multiple-output 

model (MIMO model) about AMBs-rotor was presented. Then 

the nutation stability of the system is analyzed by the complex 

coefficient method. Because the filter cross- feedback is an 

additive compensation, we can get the desired compensation by 

analyzing the Nyquist diagram of the system. At last, the filter 

cross-feedback controller is designed according to the 

compensation value. Simulation and experimental results 

demonstrate that the filter cross-feedback designed by the 

proposed method works well for restoring the stability of the 

system. 

I. INTRODUCTION 

Compared with the conventional mechanical bearings, 

special advantages of AMBs are high power density, 

operation with no mechanical wear, less maintenance and 

longer lifetime[1]- [3]. 

In order to make better use of these advantages, the AMBs-
rotor often has a high operation speed. Due to the coil 

inductance of magnetic bearings, the power amplifier in the 

AMBs-control system can be approximated to a low pass 

filter, which will introduce a phase lag and degrade the 

stability of the nutation mode. Especially as the operational 

speed of rotor increases, the lag becomes more serious, which 

can easily lead to the instability of the high-speed rotor 

system and possibly induce destructive crashes. Therefore, an 

effective suppression of the nutation mode is the precondition 

for the stable operation of the AMBs system. 

Many researchers have investigated the AMBs-rotor 

control issues introduced by nutation mode and proposes 

some solution methods such as multivariable H∞ control [4] 

and model-based decoupling control [5], etc. Akio 

Sanbayashi designed a gain scheduled (GS) control for an 

AMBs-rotor system. The rotational speed is treated as a time-

varying parameter and Linear fractional transformation (LFT) 

is applied to design the GS controller [6]. The mixed μ 

synthesis technique is applied in [7] with respect to a 

particular test rig exposed to severe gyroscopic effects. 

The aforementioned methods use modern control theory to 

cope with the gyroscopic coupling issues. However, the filter 

cross-feedback control is also an effective method to suppress 

gyroscopic effects [8]. It is widely used in engineering 

applications due to its simple structure. But, there is no 

simple and explicit method for designing the parameters of 

filter cross feedback. Generally the parameters of filter cross-

feedback are designed from the simulation of root locus, 

which makes the filter cross-feedback control complex to be 

used in practice [9]. 

In this paper, an AMBs-rotor system is modelled using the 

complex coefficient method. Then, the parameters of filter 

cross-feedback are designed exactly from double-frequency 

Bode plot method, which ensure the stability of nutation 

mode. Finally, the experimental results on a MSCMG 

prototype validate the effectiveness of the proposed method. 

II. MODELING 

In this paper, the simulation and experimental 

investigations are based on a magnetically suspended control 

moment gyros (MSCMG). The whirl modes caused by the 

gyroscopic effect are only related to the tilting motion. 

Therefore, this paper mainly focuses on the tilting dynamics 

of the magnetically suspended rotor. According to Newton’s 

law, the dynamical model of the AMB-rotor system can be 

presented as 

x ay by

y ax bx

J H F a F b

J H F a F b

 

 

 

 


   


   

                             (1) 

The whirl modes caused by the gyroscopic effect are only 

related to the tilting motion. Therefore, this paper mainly 

focuses on the tilting dynamics of the magnetically suspended 

rotor. According to the real rotor system, the tilting motion 

can be modeled as: 
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where ik  and hk  are the current stiffness and the position 

stiffness of magnetic bearing; wg  and cg  are the transform 

operators from input to output signal of the power amplifier 

and PID controllers respectively. That is 
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PID controller and the power amplifier are expressed by 
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where the parameters in (3) and (4) have been defined in 

Table II. 

According to the geometric structure of the rotor, tilting 

angles about x-axis and y-axis are expressed by 
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where sl  and ml  are the distance from O to sensor center and 

distance from O to bearing center. O is the geometric center 

of the rotor. 

Substituting (5) into (2) yields 
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The phase of α leads that of β by 90◦. Accordingly, we can 

define a complex coefficient φ=α+jβ, where j is the 

imaginary unit and j2 = −1. Then, using the complex 

coefficient method, the tilting equations in (1) can be 

converted a complex variable equation: 

2r m h s i s w cJ jH l k l k k g g   
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Applying the Laplace transform to the differential equation 

(8) yields 

2( ) ( ) - ( ) ( ) ( )r m h s i s w cJ s jHs l k s l k k g s g s s         (9) 

Then, the equation described in (15) can be equivalent to a 

SISO feedback control system, as shown in Fig. 3. Its 

corresponding transfer function of the controlled plant and 

control scheme can be presented, respectively, as 
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( ) ( ) ( )ce s i s w cg s l k k g s g s                       (11) 

The open-loop transfer function of the SISO feedback control 

system is presented as 

( ) ( ) ( )OL oe ceg s g s g s                                     (12) 

That is, after the variable reconstruction, the original MIMO 

cross-coupled system with real coefficients is converted into 

a SISO control system with complex coefficients. The 

transformation system owes the advantages of simplicity and 

convenience of the single-valuable frequency-domain method. 

III. COMPENSATION FOR NUTATION MODE    

BASED ON CROSS FEEDBACK 

Because the imaginary unit j is in (16), the Bode plots of  

( )OLg j  are not symmetric for ω > 0 and ω< 0. The Bode 

plots of ( )OLg j  and ( )OLg j  for 0  are drawn as 

shown in Fig. 1 to analyze the stability of the overall system. 

Where 250rF Hz  and the system parameters have been 

defined in Table I.  

Table I. PHYSICAL PARAMETERS OF THE AMB-ROTOR SYSTEM 

Symbol Value Symbol Value 

m 16.7kg l 0.111 m 

Jr 0.08285 kgm2 ki 600 N/A 

Jz 0.1302 kgm2 kh 2400000 N/m 

lm 0.0725 m   

Table II. CONTROL PARAMETERS OF THE AMB-ROTOR SYSTEM 

Symbol Value Symbol Value 

Kp 4.5 ks 13650000 

Ti 0.000575 aw 585.543 

Td 0.0051 bw 0.325 

Tf 0.0002785   

The vertical dashed line in Fig. 1 represents a 180  Down-

jump of phase frequency characteristic from the starting 

turning point to the termination turning point. The upward 

arrow indicates a half positive crossing, and the downward 

arrow indicates a half negative crossing [10]. the total number 

of crossing of double phase-frequency characteristic: 1N   .  
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Figure 1. Block diagram of equivalent SISO control system. 



The number of poles which have positive real part for 

( )OLg s   is defined as Q. According to (12), we can get Q=0 . 

The number of poles which have positive real part for the 

close-loop SISO system is defined as Z. Then we know 

1 0Z Q N     . So the system is unstable. The further 

analysis shows that this instability is caused by nutation mode. 

Fig. 1. shows the gain of ( )OLg j  at 1nf  is 0 dB and the 

corresponding phase 1n  is smaller than 180 , which makes 

once negative crossing. The added negative crossing is the 

reason of instability of natation mode. The idea of cross 

feedback compensation is to remove this added negative 

crossing. That is, keep the gain of  ( )OLg j   at 1nf  still 0 

dB and make the corresponding phase change to 

2 +180n  . Where    is called phase margin and 0  . 

The Nyquist diagram of   for positive frequency is shown in 

Fig. 2. O is the origin of the coordinate. 1n  represents the 

complex value of ( )OLg j ,  where 12 nf  . That is, 

1

1
nj

on e


 . The transfer function of open-loop SISO system 

with filter cross- feedback is denoted as ( )OLrg s . The Nyquist 

diagram of ( )OLrg s  for positive frequency is also shown in 

Fig. 2. 2n  represents the complex value of ( )OLg j ,  where 

12 nf  . Because the filter cross-feedback is an additive 

compensation, we can get the desired compensation as follow: 

2 1 2 1
ncj

ncn n on on c e


                                (13) 

The filter cross-feedback is an effective method to improve 

the nutation stability. Its theory is shown in Fig. 3.  chk  and 

h  are the cross coefficient and the cutoff frequency of the 

high pass filter, respectively. They both determine the effect 

of compensation, so our goal is to design the two parameters 

to make the AMBs-rotor system as stable as possible. 

 
According to Fig. 3, the model of the AMBs-rotor system 

with filter cross-feedback can be expressed as  
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where HPFg  is the transform operator from input to output 

signal of the high pass filter. 

Now, the transfer function of open-loop SISO system with 

filter cross-feedback is presented as 

( ) ( ) ( )OLr cer oeg s g s g s                           (15) 

The new control scheme is deduced as 

( ) 2 ( ) ( ) 2 ( ) ( )cer s i s w c s s w HPFg s l k k g s g s jl k g s g s          (16) 

The additive compensation produced by filter cross-

feedback can be expressed as 

( ) ( ) ( ) ( ) ( ) nc cer oe ce oeg s g s g s g s g s                    (17) 

Substituting (10), (11) and (16) into (17) yields 

( ) 2 ( ) ( ) ( )nc s s w HPF oeg s jl k g s g s g s                     (18) 

 When the system is accurately compensated we have the 

relation as follows: 
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Considering both the stability and the respond speed of the 

system, the phase margin   is designed to be 20 . Then we 

can get 1712.3h  rad and 9.77chk by solving (19). The 

Double-frequency Bode plot of the open-loop SISO system 

with filter cross-feedback is shown in Fig. 4 For the positive 

frequency characteristic, the value of the crossover frequency  

1nf  on the right of the nutation resonant peak is still the same. 

But the corresponding phase becomes larger, which 

eliminates the negative crossing near 1nf . That is, the number 

of poles which have positive real part for the close-loop SISO 

system becomes zero and the AMBs-rotor system restores its 

stability. 

The parameters of the filter cross-feedback h  and chk  at 

different rotational speeds can be designed by the same 

method. Fig. 5 shows the values of h  and chk  needed in the 

whole speed range. 
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Figure 3. Block diagram of the filter cross-feedback method. 
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Figure 2. Nyquist diagram of the open-loop SISO system 



 
The parameters of the filter cross-feedback h  and chk  at 

different rotational speeds can be designed by the same 

method. Fig. 5 shows the values of h  and chk  needed in the 

whole speed range. 

 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

The experimental setup is shown in Fig. 6. The radial 

clearance of the auxiliary bearings is 300 um. In normal 

operation, the radial displacement signal contains only the 

vibration component caused by the mass imbalance of the 

rotor, which has the same frequency as the rotational speed. 

And the amplitude of the radial displacement signal generally 

does not exceed 15% of the bearing clearance. A high-speed 

Texas Instruments DSP (TM320C28335) with a sampling 

frequency kept at 6.67 kHz operates the digital control 

algorithm. The rotor displacements are detected by eddy 

current sensors. 

A. Simulation Analysis 

The simulation platform of the AMB-rotor system in 

MSCMG is established using the software MATLAB/ 

SIMULINK. In the simulation model, the operational speed is 

set 15000 r/min. First, we adopt a PID controller to track the 

reference signal. The parameters of the PID controller were 

selected to offer the best performance under a step input. The 

 

 

 

radial displacements become significantly large, reaching 

20% of the bearing clearance, as shown in Fig. 7 (a). The 

system tends to be unstable. Analyzing the frequency 

spectrum of displacement ax, we find that the amplitude of 

the nutation frequency (NF) is almost as large as the 

synchronous frequency (SF), as shown in Fig. 7(b). So the 

instability of the system is caused by the nutation mode. 

Adding the filter cross-feedback to the PID controller, 

parameters of which are designed by the proposed method, 

the radial displacements are reduced to less than 11% of the 

bearing clearance, as shown in Fig. 8. The system restores 

stability. 
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Figure 7. Simulition result of the AMBs-rotor system without the filter 

cross-feedback. The synchronous frequency is 250 Hz. (a) Radial 
displacement responses of channels ax and ay. (b) Frequency spectrum of 

displacement ax  
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Figure 5. The values of ωh  and kch  needed in the whole speed range. 
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Figure 4. Double-frequency Bode plot of the AMB-rotor system with the 

filter cross-feedback.  

Figure 6. Experimental setups.  



 

B. Experimental Results 

To evaluate the performance of the AMB-rotor system 

under various operating conditions, the experiments are 

conducted in this section. The experimental results are 

recorded by Digital Oscilloscope Agilent 3024A. In the 

sampling record plotted by oscilloscope, the time domain 

signals of radial displacements (denoted by ax and ay) at End 

A are printed. The real-time power spectrum of the ax-axis 

displacement signal is also obtained by employing the math 

function of the oscilloscope using the fast Fourier transform. 

Fig. 9 (a) shows the radial displacements reach 20% of the 

bearing clearance with a PID controller, when the rotational 

speed is 15000 r/min. The amplitude level of NF is up to -

28.3 dB, lager than the amplitude of SF. This poses a 

potential risk to the stability of the AMBs-rotor system. 

Adding the filter cross-feedback designed by the proposed 

method to the PID controller, the experimental result is 

shown as Fig. 9 (b). The power spectrum level of NF dropped 

to -55.9 dB. These data mean the nutation mode is controlled 

within a very safe boundary. The filter cross-feedback, 

parameters of which are designed by the proposed method 

can effectively improve the stability of the AMBs-rotor 

system. 

I. CONCLUSION 

The stability of the nutation mode is an important concern 

for the applications of the AMBs-rotor system. This paper 

analyzes the compensation value of nutation mode of the 

system by the complex coefficient method. Then, the 

parameters of the filter cross-feedback is designed according 

to the compensation value. Simulation and experimental 

results demonstrate that parameters kch and ωh designed by the 

proposed method can make the filter cross-feedback work 

well for restoring the stability of the AMBs-rotor system. 
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Figure 8. Simulition result of the AMBs-rotor system with the proposed 

filter cross-feedback. The synchronous frequency is 190 Hz. (a) Radial 
displacement responses of channels ax and ay. (b) Frequency spectrum of 

displacement ax. 
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Figure 9. Experimental result: the synchronous frequency is 250 Hz. (a) 
The filter cross-feedback is not implemented in the controller. (b) The 

filter cross-feedback is implemented in the controller. 


