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Abstract—Active magnetic bearings (AMBs) have lots of ad-

vantages than conventional mechanical bearings so that they are 

being applied to various industrial rotating machineries. 

However, AMB system is a complex and nonlinear open-loop 

unstable mechatronic system. For most AMBs, the bias current 

of actuator is needed which means the input constraint. In this 

paper, a model predictive control (MPC) technique is developed 

for eight-pole AMB system with input constraints to improve the 

ability of resisting external disturbances, e.g. sensor noise and 

external force. And stability analysis is given and shown that this 

method enlarging the region of attraction. Finally, the 

performance of the proposed control method is verified via the 

simulations. 
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A. Introduction 

The manufacturing industries develop rapidly in recent years, 
which result in higher requirements with machines. 
Conventional rotating machineries can no more completely 
satisfy demands such as higher precision and higher rotating 
speed.  Active magnetic bearings (AMBs) are such kinds of 
good substitutes, which suspend the rotor in the air without 
contact. Compared with conventional mechanical bearings, 
AMBs enjoy advantages of no fray, needless of lubrication, 
high rotating speed, controllable stiffness and damping etc.  

However, AMB system is a complex nonlinear mechatronic 
system involves electronics, mechanical engineering and 
control engineering etc [1]. Moreover, AMB system is an open-
loop unstable system. All of those make it challenging yet 
indispensable task to stabilize the AMB system and resist 
external disturbances. Efforts have been devoted by numerous 
companies and scholars. Queiroz and Dawson designed a 
nonlinear controller with a back stepping approach and 
achieved global exponential rotor position tracking [2]. To deal 
with the issue of coil resistance variation, Lindlau and Knospe 
used the feedback linearization method, in which, a µ-controller 
was designed for the feedback linearized system to minimize a 
beam compliance performance specification [3]. Lei and 
Palazzolo provided the approach of controller design for 
flexible rotor system with AMBs in detail [4]. Schuhmann et al. 
conducted a quadratic Gaussian controller consisted of an 
extended Kalman filter and an optimal state feedback regulator 
for real-time AMB controlling, which shows better 
performance compared with conventional PID approaches [5].  

For the phenomenon of magnetic saturation and the current 

working point, there are usually existing input constraint. Yet a 

few researches take input constrain into considerations. In this 

paper, a model predictive control method is apply to the eight-

pole AMB system with input constraints. We are aiming to 

develop control methods for AMB system with input constrains 

and improve its ability of resisting external disturbances, e.g. 

sensor noise and external force.  

B. Model of AMB system 

In this paper, an eight-pole radial active magnetic bearing 

system is main research object, which is composed of rotor, 

displacement sensors, amplifiers and controller etc. 

As it shows in Fig. 1, the angle between sensor direction 

and coil direction is / 4   . 0x is the distance of air gap 

from auxiliary bearing center to the coils. 
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Figure 1. The radial magnetic bearings and rotor 

 

The two orthogonal forces 1F  and 2F  are: 
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where 1cI , 2cI  are control currents and bI is bias current.

1 1b cI I I  , 2 1b cI I I   , 3 2b cI I I   , 4 2b cI I I   are the 

currents of four coils respectively, 2

0 1/ 4 cos( / 2)k N s   ,

 is the permeability in the air, N is the number of coil turns 

and s is the polar area. 1 2,x x  are the displacements of the rotor. 

1 1
2 2 2 2 , 2 2 2 2s s s sx x y y y y              (2) 

where xs and ys are the movement of rotor in sensor directions. 
The linearization [6] of equation (1) is 

1 1 2 2i c x s i c x sF K I K x F K I K y   ，              (3) 
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where 2

04 /i bK kI x  , 2 3

04 /x bK kI x are current stiffness and 

displacement   stiffness respectively. The dynamic of the rotor 
is derived as, 
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m x F K I K x

m x F K I K y

  


  
                      (4) 

As is showed in equation (4), if the same control variables 

are given to two couple of coils in F1, F2 directions, the rotor 

would display the same state in both directions. Thus the study 

is simplified to one direction. 

Let 
1 2[ , ]Tx x x , 1y x , 1cu I , then the state-space 

representation of (4) is 
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C. Mode predictive controller design 

Mode predictive control is a control method depends on the 
current state. In the processing of each sampling instant, the 
current control action is achieved by the optimization of the 
system in a finite horizon online while the current state is taken 

as initial state [6]. 
The main advantage of MPC is its ability of dealing with 

input constraints [7]. MPC algorithm is thus employed in this 

paper, the design procedures is presented as follow. 
The discrete version of equation (3) is 
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with , ,m n qx y u   and 2, 1, 1m n q   . An 

invariant set for x(k) is introduced as follow, 

      : | 1
T

x xS x k x k P x k                       (7) 

The first step is to find the optimal state-feedback matrix 

K for system (6), in which, K A BK    should be Hurwitz. 

Here, the Linear Quadratic Regulator (LQR) algorithm is used, 

and the cost function is 

0

( ( ) ( ) ( ) ( ))T T

k

J x k Qx k u k Ru k




                      (8) 

where ,Rm qQ  are positive definite matrixes. 

Then, the predictive controller is designed as 
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( 1)[ ,0 ]q q q h qG I     , and h  is the predictive horizon ( 1h   ), 

the prediction vector ˆ( | ) ( )k k k    where 
 

( ) : [ ( ) , ( 1| ) ]T T Tk k k h k     , 

and 1( | )T qk i k    is a perturbation vector, ( )k  is defined 

as 
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with i= 1,2,…,h. Obviously, ˆ( + | )k i k  will decrease to 

zero under less than h steps with operator V . As a result, 
only the state-feedback control part will still work and u = 
Kx. While the input of AMB system (5) is limited by 
constrains, constrained MPC is used to ensure the stability 
and feasibility of AMB system. Consider 

  ˆˆ ˆ( + | ) | ( + | )
T

x k i k x k i k k i k  
 

, which means 

  ˆˆ + | ( + | )x k i k Hx k i k                         (11) 

where  ,[ ]m m hqH I  0  . And with equation (6) and (9), we can 

get 
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, 1,i h , An invariant set for ˆ( )x k  is 

introduced here, 

: { ( ) | ( ) ( ) 1}T
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with positive-definite matrix xP . 

ˆ( + | )k i k is achieved by quadratic optimization algorithm [7], 
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where  i= 1,2,…,h-1,  j= 1,2,…,q, bu  is the hard input. 

   ˆˆ | |j j bu k i k L x k i k u                            (15) 

in which 
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equation (15)will be satisfied when 
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Some assumptions are put forward as follow to ensure the 
stability of the system (6), (9). 

Assumption 1: Equation (17) holds and equation (14) is 

solvable. The system (6) is stabilizable and K can be find 

be satisfy that Φ = Ad − BdK is Hurwitz. 

Assumption 2: There exist constants    and symmetric 

matrix xP   satisfy 
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Based on Assumption 2,  if ˆ ˆ( | ) ( | ) 1Tx k i k Px k i k   , then 
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That’s to say xS  is an invariant set. 

Rewrite xP  in the form as 
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substitute it into equation (13) 

 

1 2( ) ( ) 1 2 ( ) ( ) ( ) ( )T T T Tx k Px k k P x k k P k              （19） 

x(k) achieves the maximum value when 
1

3 2( ) ( ) ( )mk k P P x k       

substitute ( )m k  into equation (19), a new set Sm for initial 

x(k) is achieved 

: { ( ) | ( ) ( ) 1}T

m mS x k x k P x k                          （20） 

where 1

1 2 3 2

T

mP P P P P   is positive-definite and 1mP P . When 

( ) 0k  , with equation (7) and (19), it’s clearly that 1mP P . 

Thus m xP P  and x mS S , the allowable initial state is 

expanded. We can achieve the maximum mS  by maximize 
1det( )mP  . Since (11) and (13), we have 

1 1 T

m xP HP H                               （21） 

which means we can maximize 1det( )T

xHP H  to obtain the 

maximum invariant set Sm. 

 

D. Simulations  

In this section, our objective is to verify the effectiveness of 

the proposed controller through simulations. The parameters 

within simulation are presented in Table I. As for the model 

predictive controller, the predictive step is set as h = 15.  

An PID controller is introduced here to make a comparison 

between traditional controller with Ours. In our simulations, 

two set of PID parameters are applied which conducted a 

rapid result with overshoot and slow result of levitation. And 

the parameters P,D are the same as the LQR parameter k1,k2. 

In Fig. 2, the result shows rising time is sharply reduced 

form 0.06s to 0.03s. And the simulation of Fig. 3 implies the 

overshoot decrease with an approached rising time. And in 

simulation a measure random disturb which operation time T 

= 0.004s, and the max noise 20x m   is conducted at t = 

0.3s. The MPC controller has better performance than PID. 

 

           

 

    TABLE I: Parameters of the AMB 

 
Data                       Value                           Units 

Rotor mass m0                          8                                 kg 

Air gap x0                            0.50                             mm 

Bias current Ib                            1                                 A 
Current gain Ki                     511.35                           N/A 

Position gain Kx                  4.0926E6                       N/m 

 

 
Fig. 2: Low speed levitation of PID and MPC, P = 2000, I = 

100, D = 10 

 
Fig. 3: Rapid speed levitation of PID and MPC,  P = 3000, I 

= 100, D = 10 

 

E. Conclsusion 

In this paper, we study a model predictive controller for AMB 

system with input constrain. By introducing the system model, 

we designed the MPC controller for the levitation of AMB. 

And then we conducted some simulations of the comparison 

between conversional PID controller and the designed 

controller. The results indicate the designed MPC controller 

has a better levitating response performance of AMB and a 

stronger ability to resist disturbs. In the future, we are aiming 

to apply our methods to the real AMB system applications. 
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