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Abstract—Unbalance vibration force is critical in normal
operation of magnetic bearings. Among all vibration forces, the
synchronous vibration force is the most influential factor. To
effectively suppress the unbalance force caused by the mass
unbalance of high-speed magnetic suspend rotor, in this work, a
novel method for active magnetic bearings based on the
synchronous rotating frame (SRF) transformation is adopted. In
this case, the magnetic bearing force is directly set as the input
of the SRF transformation. The structure and principle of SRF
transformation is proposed. In order to maintain the system
stability, stability analysis which is related to the SRF
transformation is conducted. In order to ensure the stability of
the whole close-loop system, only one parameter needs to adjust.
Simulation results show that the proposed method can
effectively suppress synchronous vibration force. Compared
with the conventional method of vibration force suppression the
method proposed has batter performance.

L INTRODUCTION

As is a non-contact support structure, Active magnetic
bearings (AMBs) have many promising and practical
advantage over conventional mechanical bearings, such as
lower rotating frictional loss, lubrication elimination, higher
rotational speed and adjustable stiffness. With so many
advantages, magnetic suspended bearings are widely used in
high speed motors, molecular pumps and spacecraft attitude
control [1]. Despite of the advantages, unbalance mass, caused
by the limitation of machining accuracy as well as the
principle of geometry axis is not coincident with its inertial
axis. Unbalance mass with small amplitude can lead to serious
vibration [8]. When the rotor rotates at a very high speed, the
vibration turned even more severe because of the centrifugal
force which is proportional to the square of the rotation speed.
Unbalance vibration force transferred to the outside through
the casing can generate noise, vibration even damage of
mechanical equipment. Hence, it is necessary to adopt active
control method to suppress synchronous vibration force.

There have many previous research works on vibration
suppression of the magnetic suspended rotor control system.
There are two main control strategies for real time vibration
force suppression. One is to set the position of the inertial axis
as the control target, then force the rotor to rotate around the
inertial axis. This approach can suppress vibration force, but
this approach needs to identify the inertial axis position which
relative to the reference frame.The effect of suppression
mainly depends on the identification precision of inertial axis.
When the unbalance is small, the sensor installation and
detection error can weaken the vibration suppression effect.
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Another approach is to directly set the synchronous vibration
force or torque as the target, then eliminate it by proposed
control algorithm. This method can eliminate the synchronous
component in control current and displacement. In [4] a
method based on (Least Mean Square, LMS) was proposed to
compensate synchronous current by feed forward signals
synchronous to current with the same amplitude. Another
repetitive learning algorithm in [5] was proposed to adjust
learning rate adaptively, which can suppress synchronous
current in large speed range. However, these methods did not
take the vibration caused by displacement stiffness force into
consideration.

In this paper, an improved synchronous vibration force
suppression algorithm based on SRF is proposed. We set the
vibration force as the input of SRF directly, then feedback the
output of SRF to the current loop of origin system, which
construct a novel notch filter. SRF transformation can track
the harmonic signals of a certain frequency and can apply real-
time compensation. SRF has been applied in three phase
induction motors but seldom applied in the vibration
suppression of AMBs [2]-[3]. To the best knowledge, there is
no literature in which this method has been used to suppress
synchronous vibration force in magnetic bearings control
system.

The main idea is that: 1) After the SRF transformation, the
harmonic and fundamental components of synchronous vector
can be decomposed easily; 2) Harmonic components can be
eliminated through a low-pass filter; 3) Adjust only one
parameter can ensure the global stability. Then stability
analysis is provided and synchronous vibration force is
suppressed effectively.

The rest of paper is arranged as follows. In section Il , a
model of magnetic suspended rotor with mass unbalance is
build. In section III , the principle of SRF is proposed and in
section IV , stability analysis of the close-loop is given.
Simulation results are presented in section V . Finally,
conclusions are provided in SectionVI.

II. DYNAMIC MODELING WITH MASS UNBALANCE

The structure of rotor with unbalanced mass is shown in the
Fig. 1. The existence of the static imbalance and dynamic
imbalance of rotor resulting from that geometry center and the
mass center do not coincide. The principle axis of inertia is not
coincident with its axis of geometry. In this paper, only
motions in four radial DOFs are investigated, for the reason
that unbalance effect exist in the radial direction. The diagram



of radial magnetically suspended rotor with mass unbalance is
showing in Figl.
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Figure 1. The basic structure diagram of magnetic suspended rotor with
mass unbalance .
Let IT, and IT, represent the central plane of magnetic
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geometric axis and plane [], I, ]I . Then N represent the
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point of intersection between the central line of two AMBs
and plane [I . N donate the origin of the stationary frame
NXY and O is the origin of the rotating frame O¢n in the

central plane of rotor. The rotating frame rotates at the speed
of rotator- Q . Joc is the distance vector between the rotator
mass center and geometric center. loc, and lo,c, are the
distance vector form O, to C,and O, to C, respectively. € is
the angle between OC and Oeg . & is the distance of OC .
@, & are the angle between O¢ and the projection of lo,c,
and lo,c, in plane []. (X,.Y,). (X;.Y) . (X,,Y).

(X;,Y,) are defined as coordinates of O,. O,. C,. C,in

stationary frame NXY respectively. The coordinate can be
expressed as

X0 =x,0)+y @)

YA(t):yA(t)+(//AY(t) (N
X)) =x5(0)+y g (D)
Yy (1) =y () + (1)
where v (O W, (O~ Wy (D Wy, (1) can be
described as
W . () =1cos(Qt +60)—mcos(Qt + o)
W o () =1sin(Qt + 0) + msin(Qt + a) )

Wy (t) =1cos(Qt + )+ ncos(Qt + S)
Wy (t) =1sin(Qt + 0) —nsin(Qt + )

When the rotor moves in a small area near the
equilibrium position, the equation of magnetic force can
be linearized as

Fo=kX, +ki (X,
F,=kY +ki, X,
Foo =k X, +kiy (X,)
Fyy =k Yy +kiigy (Yy)

F,, and F,, are the magnetic forces

©)

where F~ F -
generated by bearings 4 and B in x and y directions,
respectively. i~ i,,~ iz~ Iz are control current for
bearings 4 and B in x and y directions, respectively.
k, and k_ donate the current stiffness and displacement
stiffness of AMB, respectively. Let

V1 (6) == cos(Q + )
Y 4y (1) = =5 sin(Q1 + )
Wy (1) ==& cos(Q + @)
Wy (1) = =5 sin(Q + )

“)

then the equation of magnetic forces with mass
unbalance can be derived as

Foo =k (X, +y ) +k iy (x,+W,,0))
Fo=kX,+y,)+k,(y,+¥y))

. ©)
Foy =k (Xp +W gy )+ k(igy (x5 + W 5y))
Foy =k, (Y + Wy )+ k(g (V5 +W5y))
where W, v W Wi Wiy are displacement

disturbance in A . B bearings generated by mass
unbalance, respectively. According to equation (5), both
displacement component and current component of
magnetic forces containing unbalance disturbances.

1.

To simplify the algorithm description, two coordinate
systems are defined, C and M represent the mass center and
geometric center of the rotor, respectively. Set C as the
origin of the static reference frame CX Y, and Set M as the

THE PRINCIPLE OF SRF TRANSFORMATION

origin of the bearing-rotor coordinate CX,Y which rotate
with the speed of Q . It can be derived that the motion
trajectory of the geometric center M with the mass center C
is a circle. Therefore the displacement coordinate of geometric
center M in rotating frame is a constant vector.

Let [X,,Y,] and [X,,Y ] represent the motion coordinate
of M in static reference frame and rotating frame,
respectively. Then it can be derived that

X T(Qt X 6
Y [Fren), ©)
where
Q) = ( co.s(Qt +6) sin(Qr+ 0)] o
—sin(Qt+ ) cos(Q +0)



where T(Q¢) donate the SRF Transformation. Q is the

rotation speed of the rotor. 8 represents the compensation
angle for phase which is used to ensure the stability of the
whole control system.

If the rotor rotates at a constant speed () , after the SRF
transportation, the spectral characteristics of input signal is a
dc component with mixed harmonic signal. Then the
fundamental component can be extract by a low-pass filter.
Although higher-order filters can improve the filtering effect,
they will increase the calculation burden. Therefore, first-order
filters are commonly employed, i.e.

g, (s) :ﬁ ®)

At last, by applying a inverse SRF transportation and set the
output of the first-order filters as the input of the inverse SRF
transportation as follows, the synchronous vibration signal of
the rotor can be reached.

X =T (Qt x,
Yc - inv( ) 2

where X s )i are outputs of first-order filters X_, Y, are

)

synchronous vibration signal of the rotor, and 7, (Qf) is
cos(Q¢) —sin(Qt
(ny—[€5@N —sin(@n)
sin(Q¢)  cos(€dt)

The whole structure of the SRF transportation is shown in
Fig2.
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Figure 2. The general diagram of SRF transformation.

In this paper, the suppression of synchronous vibration
force is mainly discussed. From equation (5). In order to
eliminate the vibration force effectively, it is necessary to
eliminate two parts force, which are synchronous current
stiffness force and synchronous displacement stiffness force.
Generally, the current stiffness and displacement stiffness are
known constant values.

According to the location of the sensor, vibration signal in
x and y axis have the same frequency but with phase

difference of 90° so complex variables were adopted, yields
X+ jY, (0) = (X, () + jY, ()’ (1)

The Laplace transform under zero initial conditions is
deduced as

Xy () + Y, (5) = (X, (s =)+ jY,, (s = Q))e ™
Typically, the transform function of low-pass filter is

£
G/(S): As+1

Then it can be obtained that

(12)

(13)

A

Xouw(s)+j IA/om (s)= ()A(dc )+ j IA/,IC (8))e’™™
:)A(dc(s—jQ)"rjf]dc(S—jQ)

) P
= (X,-n(S)JFJYm(S))m

= (X, () + Y, (s))G, ()
Where G, (s) is the open-loop transfer function of SRF.

(14)

—Jbk

Hence, the SRF close-loop transfer function can be derived as
follows.
1 As—jQ)+1
Gy (s)= __ (As—jQ) L
’ 1+G,(s) (As—jQ)+1+e ¢
The synchronous vibration force is directly set as the
control target. The vibration force is constructed by
synchronous current and displacement. Then set the
synchronous vibration force as the input of the SRF. The

(15)
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Figure 3. Close-loop control system of AMBs with SRF transformation

Iv.

According to the system structure diagram, the
characteristics polynomial of the close-loop transfer function
can be obtained as

1+ K,G,.(5)G,,(s)P(s)— K, P(s)+ K.G, ()G, (s)=0 (16)

Substitute (15) into (16), then (16) can be written as follows

STABILIYTY ANALYSIS

X (s)+ j¥ (s
($)+jY(s)



1+ K.G.(5)G,(s)P(s)— K, P(s)+ K.G , (5)G,(5)
XD
s—jQ+e+ke™
1+ K,G,(5)G, (s)P(s) - K, P(s)
K, (As—jQ+¢)G, (s)

1+K,G.(5)G, (s)P(s) - K, P(s)

As described in [6], a sensitivity function is used to prove
stability. Set S(s) as the sensitivity function of this control
system.

(17)

=(As— jQ+e+ke ")+

K.

S(s) = G (5) (18)
1+ K,G.(s)G, (s)P(s)— K, P(s)

Assume that the system and S(s) are stable before the SRF

is added. Then the ploys of S(s) remain in left complex plane.

The (17) can be simplified as

(As—jQ+e+ke’™ )+ (s = jQ+6)S(5)=0 (19)

in which k=kK , K is a constant value and k is a minimal
value. (19) can be written as
c(s,k)=(As— jQ+&+kKe ™)
+(As—jQ+&)S(s)=0
Only one ploy is obtained in characteristics polynomial, if
k=0, which is

A

(20)

21

After the insert of SRF transportation, ploys of close-loop
system will lie within a small region of s=(jQ-60)/4 .

According to (20) the derivative of s can be obtained when

k =0 as follows

o) __0s(s.h) ) Otk (22)

ok ey ok ds A1+ S(jQ))

In order to satisfy the stability requirements and ensure the
motion of root locus to left after inserting the SRF, the real
part of(22) need to less than zero as follows

A1+ S(Q))

Ke /%
m-————|=0
A1+ S(jQ))
where Re[.] denote the real part and Im[.] means

imaginary part. The stability condition shows in(23) is equal
to the equation as follows

Ke’jgk

(23)

T Ke /% Vs
- <arg(———) <=
2 21+ SGQ) 2

For the sensitivity function S(s) , the Phase-frequency

24)

characteristic diagram is shown as Fig4, the Phase ranges from
—90° to 270° , Theoretically, which dose not satisfied the
stability requirements. So we can conclude from (24) that,
with the change of rotor speed Q , the system stability can be
ensured by tuning the compensate angle 6, .
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Figure 4. The phase frequency response curve of sensitivity function.

V.  SIMULATION VERIFICATION

A. The verification of SRF based vibration suppression

In order to verify the effectiveness and feasibility of the
direct vibration force suppression, control algorithm was
carried out by an AMB model in Matlab/Simulink. Simulation
parameters of AMB system are shown in Tablel.

TABLE L SIMULATION PARAMETERS
Parameter Parameter Value
m(kg) rotor mass 4.08
k, Proportional coefficient 2.5
k, Integral coefficient 50
k, Differential coefficient 0.008
k, (N/m) Displacement stiffness 1.3x105
k, (N/A) Current stiffness 32
T Distance 0.055m

Stability is the most important part of the entire control
system. As mentioned previously, compensation angle & plays
a critical role for proposed method. To analyzed the close-loop
system stability, The compensation angle was set as
6, =0,6 =n/2,and 6, =r according to different rotation

speed.

Figs 5-7 illustrate the simulation result of the AMB system,
when the rotor rotates at a speed of 50Hz(3000rpm) .
100HZ(6000 rpm) and 200Hz(12000rpm), respectively. It can
be obviously derived form Fig5. and Fig6. that when the
rotation speed is relatively low, such as 50Hz , and with the
compensation angle 6, =0, the close-loop control system is

out of stable. As shown in Fig. 5 (b), By Tuning the
compensation angle 6, to a proper value, the stability of the
system is guaranteed. With the speed increasing, as shown in
Fig. 6, the rotor speed is 100Hz and without compensation
angle, the system is divergent. By adjusting compensation
angle to 6, =z /2, then the proposed vibration suppression

method performed well. When the rotation speed is high, the
system become more stable. As shown in Fig. 7, the speed of
rotor is 200Hz and 6, =0, the system is of convergence. On

the contrary, with speed is 200Hz and 6, # 0 , the system

become unstable. The simulation result provided an evidence
for system stability that the proposed method for vibration
force suppression has a negative effect on the stability of the
close-loop system at low rotating speed. In [7] we can find the



similar conclusion. After analysis, the divergence output of
low-pass filter is the main cause for the system unstable.
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Figure 5. Simulation verification result when the rotation speed is SOHz. (a)
current vibration of AMB control system with compensation angle 6, =z . (b)

current vibration of AMB control system with compensation angle 6, =0 .

(a)

LHMMHW 1441

Il M

0.2

|
il

0.2 i

i(A)
o

0.6 0.8 1

time(s)

(b)

i(A)

0 ARPAAARLL AUAUﬁvﬂNW\MMf
HPTRTIT

-20 T

0.2 0.4

time(s)

0.6 0.8 1

Figure 6. Simulation verification result when the rotation speed is 100Hz. (a)
current vibration of AMB control system with compensation angle 6, =7/2 .

(b) current vibration of AMB control system with compensation angle 8, =0 .
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Figure 7. Simulation verification result when the rotation speed is 200Hz. (a)
current vibration of AMB control system with compensation angle 6, =0 . (b)

current vibration of AMB control system with compensation angle 6, =z /2.

B. Simulation result comparison

Many previous researches on vibration force suppression
is mainly about to suppress the current stiffness component of
vibration force, which can not eliminate the synchronous force
completely for the reason that the synchronous force contains
not only synchronous current but also vibration displacement.

The convergence rates and effect of the proposed method
and previous method which only suppress the synchronous
current component were compared. The parameters were
suitable selected and the simulation conducted at the rotation
speed of 12000rpm (200Hz). Before 0.2s, the control
strategies were scatter PID. Time ranges from 0.2s to 0.5s,
conventional algorithm of current suppression was proposed.
In 0.5s, The SRF-based method was switched into the AMB
control system, and after 0.5s, the proposed method become
effective.

As shown in Fig. 8, compared with method without
displacement stiffness suppression, obviously, the amplitude
of the synchronous vibration force signal after the
implementation the proposed method is smaller. The control
current can be minimized in amplitude within 0.1s.
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Figure 8.Comparison of suppression effect between the method with current
suppression only and the novel SRF- based method at 12000r/min. (a) control
current after two method applied. (b) vibration force after two method applied.

VI. CONCLUSION

In this paper, a novel method for direct vibration force
control based on SRF has been applied. Since the vibration
force was directly set as the control target. Compared with
conventional method for vibration force suppression, the
strategy proposed has a batter suppression effect and dynamic
performance. Meanwhile, the SRF-based transformation
method can ensure the stability of the whole close-loop system
by only adjusting one parameter which is compensation angle
and the simple structure of proposed method make it more
convenient to implement. Simulation results demonstrate that
this method can attenuate synchronous vibration force of
magnetic suspended rotor system at different rotational speed
effectively.
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