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Abstract—Unbalance compensation in magnetic bearing con- achieved by setting the observer gains to zero (the filter is
trol algorithms are state of the art in modern applications of "freezed"). The adaption is turned off but because the internal

active magnetic bearings. The compensation is vital 1o keep giatag are not zero, the filter output is a harmonic oscillation.
synchronous vibrations on the housing on a minimum level and

to avoid actuator saturation. The first part of the paper contains an observer based

There exist different possibilities to implement the compensa- stability proof. It forms the basis to select an appropriate
tion in the control loop. One of it is the generalized notch filter parameter set. It is also used to evaluate the properties of
[1]. This filter technology has been successfully used in magnetic v filter when the parameter set is given or simplified due

bearings for more than 20 years. imol . .
One drawback of this filter is the speed dependent parameter to implementation constraints.

set. For radial bearings of a five axis rotor, the notch filter The main part of the paper shows how the calculated notch

pa{”’;_met?rs ared W\Thgen;wﬂ 3"’0 dednse 4x4 m?”t'_ceslfor one filter parameters are used to estimate the performance and the
rotational speed. IS nig emand on computational power - : :

and memory Is not a problem any more for modem digital _robustness of the _fllter._ For this purpose a novel bode dlag_ram

signal processors. With a well tuned parameter set the unbalance 'S Introduceq to VIsuaI!ze the dlfference_between the_deSIred
compensation can be turned on well before crossing the rigid and the achieved locations of the notch filter poles. This graph

body modes. helps to select the speed ranges at which the filter is switched
The paper presents a novel observer based stability proof of gp.

the generalized notch filter and introduces two bode diagrams . . . . .
to visualize the notch filter performance and robustness. The  1his novel bode diagram is only valid when the notch filter

results are verified with a simple example and on a small 5-axis poles are far enough away from other poles of the closed loop
test rotor system. system with respect to the notch filter zeros. This condition is
violated near the rigid body and flexible modes. For this reason
an additional diagram with a stability radius is introduced
that visualizes the stability margin. In frequency ranges where
This paper presents a novel observer based approachh® rigid body or flexible modes are close, the margins can
formulate the stability proof of the generalized notch filter. secome significantly smaller. The paper suggests methods to
time dependent state space description and a time dependeprove robustness in these regions by changing the optimal
similarity transformation is used to convert the descriptiopole locations.
into a linear time invariant system, aIIOWing standard observer|n the last part of the paper the notch filter performance and
theory [2] to formulate the observer equations. robustness is evaluated in an example and on a small test rotor
It has been shown in [1] that this filter is added to theystem. It is shown that the predicted filter properties match
nominal control loop as an additional feedback like in classic@lith the measured system responses.
cascade control techniques. This gives the benefit of 'ndepe”Additionally, the paper outlines some aspects for the discrete

dent tuning of the nominal position controller (the inner loog)mplementation and simulation of the notch filter
for robust stabilization and the notch filter (outer loop). This

kind of implementation makes it also possible to switch the
filter on and off very easily without compromising the stability
of the inner loop.

The internal states of the filter can be used to calculate
the magnitude and the angle of the unbalance response. This
information can be used to calculate compensation weights forThe unbalance response is modelled as a sinusoidal distur-
rotor balancing, to supervise the unbalance or even to applgnce vectoil(t) which is part of the measured signglt).
some counteracting control [3]. The notch filter has to remove the disturbanife) from the

The generalized notch filter has also good numerical propereasured signal. This is achieved by modelling the disturbance
ties. It is possible to implement very narrow notch filters witlas the impulse response of a linear system and to apply the
very lightly or even undamped poles. The undamped casethgeory of an observer to estimate the unbalance.

I. INTRODUCTION

Il. OBSERVER BASEDSTABILITY PROOF



The signal of a sinusoidal disturbance is defined as

N(s)
d(t) = a1(t)sin(Qt) + az(t) cos(Q) N (s)
d(t) c(t) !
. a1 (1) (1)
= [sin(@0)T  cos(0)1]
az(t) y(t) 2\ _e(®)
+ »| L(s)
where () is the rotational frequency in radians per secon
and aq(t), az(t) are the amplitudes of the sine and cosine
To convert this signal to a linear model, it is assumed that t|
amplitudesa (t) andaz(t) are constant
Figure 1. Block diagram of the unbalance sigik{k), the compensation

ar(t) =0
aa(t) = 0.

The state space description is

ar(t)] o o] [ai(t)
az(t)| |0 of |ax(t)

signal c(t) from the observeiN ¢(s) and the loop gairlL(s) of the inner
position feedback loop.

B. Observer design

The observer based on the state space description (4) esti-

(2) mates the two state vectoss (t), z2(t) with 1(t), £2(t).
) aq(t We define the error signat(t) = y(t) — ¢(t) where ¢(t
d(t) = [SHl(Qt)I COS(Qf)I} LL Efﬂ ‘ is the compensation signal (fr)om tht(a )obsegva‘gf(s) for t(hga
27 unbalance signadl(t). The block diagram of the closed loop
Applying a similarity transformation to this system system is shown in figure 1.

The error signak(t) does not contain any synchronous parts
ar(t)| _ [sin(QOL —cos(QU)T| |a1(t) anymore as soon as the observer estimtg converged to
az(t) cos(Q)I  sin(Q)I | |z2(t) @) the real unbalance respondé).

. Using this error signale(t) as the input of the loop
[wl(ﬁ)] = sin(Q01 - cos(€t)1 al(t)] gain L(s), the error signal (h)as also to fulfill the equation
x2(t) —cos(Q)I sin(Qt)I| [az(t) e(s) = —S(s)c(s) where S(s) is the output sensitivity
. function S(s) = (I — L(s))~* of the inner control loop.
results in .
. The speed dependent observer geir, (Q)7 TJ(Q)T}
[xl(t) lo —QI acl(t)] . )
= weights the error signad(t) and updates the observer states
@ A
d(t) = [I 0} lml(t)] . l‘fl(t)] _ |0 Sar @) | | Tr(Q) e(t)
Lo (t) :)'32 (t) QI 0 @2 (t) TJ(Q) (6)
This second state space description (4) has a constant state and Z1(t)
output matrix for a constant rotational speRdand forms the e(t) = {I 0} th(t)] ’
basis for the stability analysis. The similarity transformation
maps the signals from a static to a rotating coordinate framﬁ i ) :
— a technique that is also known as amplitude moduldN€ transfer function matrix frone(s) to c(s) is
tion/demodulation and as the park/inverse park transformation
[4] in field oriented motor control algorithms. c(s) s 01l Tx(Q)
It is easy to see that the system matrix describes harmonic Ny(s) = @ = [I 0}
oscillators with the eigenfrequendy and no damping. ) —Or sl T,(8)
R (sTr(Q) —QT,(). (1)

A. Observability
The observability matrix of the state space description (4) To simplify further calculations, the state matrix is trans-

is given by formed into modal coordinates
Q= C = ll 0 . (5) mq(t) _ | ) 0!
CA] [0 i ma(t)] [T 1] [#2() @
Q has full rank forQ2 # 0. This tells us that the system is #1(t) 11 I| [mit)
fully observable forQ2 # 0. The poles therefore can be freely . =3 -
®2(t) —jI jIf [m2(t)

placed except for the rotational speQd= 0.



resulting in the new state space description in modal form equations become

)] [0 0 | [mi)] [T
ma®)| |0 —jo1| lmat)| | |T@ e()
" 9)
c(t)z[%l %I} ()
where T(Q) = Tx(Q) + jT;(Q) and T(Q) = Tr(Q) —
JT ().

The sensitivity functiorS(s) has a state space description,hich are the same equations as in [1].

&s(t) = Agzs(t) + Bse(t) (10)
e(t) = Csxs(t) + Dye(t).
Closing the outer loop results in the system matrix
[ jor 0 o
AQ) = 0 —QI 0 |+
_—%BS —3B, A,
. Aol 1 (11)
—5T(Q)Ds —3;T(Q)D, T(Q)C,
_%T(Q)Ds _%T(Q)Ds T(Q)Cs
0 0 0

SA(Q)

[&1(15)] _ [sin(QOI  —cos(QOI] [Tr(Q) o(t)
az(t)|  [cos(Q)I  sin(QNI | | T;(Q)
_ [TR(Q) —T,(Q)] [sin@t)I e(t) (16)
| T;(2)  Tgr(Q) | |cos(Q)1
T a1(1)
c(t) = |sin(Q2)1 COS(Qt)I:| &z(t)]
In the SISO case equation (15) becomes
IANQ) = —%T(Q)S(jQ). 17)

C. Notch filter stability

The stability of the open loop notch filté¥(s) is investi-
gated in the SISO case. The notch filter transfer funchdr)

is
1 2402
N(s) = = i
14+ Ng(s) 24+ Q24 sTr(Q2) —
The two poles of the filter are

s12(0) =~ & \/ (52 e on) a9)

o @9

2

and lay in the unstable right plane whéi () is negative.

where A, (€2) is the system matrix of the open loop with therpis happens, for example, when we choose
multiple eigenvaluest;<) from the filter and the eigenvalues 5\

from the sensitivity functioneig (A;). The sensitivity of 2~
these eigenvalues with respectdd (§2) can be investigated S

T(Q) = - (20)

using the results from appendix A. Therefore, we need ther 5\ < 0, §\ € R and the phase of the sensitivity function
associated eigenvectors of the multiple open loop eigenvaliesigger tharmd0°, which is the case for a typical sensitivity
A = £jQ of the system matrixA((€2). Due to the chosen function of a mechanical system at frequencies below the
modal representation, it can be shown that the stacked rigidsed loop rigid body modes. But this is not a restriction,

and left eigenvector®J, and V{' for the eigenvalue\, = jQ
are

Ug = (12)
—1 ]QI B,

vi=[1 o (13)

ViU, =1 (14)

Applying this result to equation (41) gives
SA(Q) = eig (VIUo) ' VISA(Q)Uy)
= eig (;T(Q)(Ds + Cs(jQI - As)lBs)>
1. .
= —5eig (T(Q)S(j2).
(15)

The observer gainfL'z(Q2) = R(T(Q)) and T;(Q) =

because the filter poles move to the left side when closing the
outer loop.

IIl. TUNING GUIDELINES

The design problem to stabilise the notch filter is to specify
a matrixT(£2) such that the closed loop eigenvalue§?) are
stable. This is the same as requiriRgd A (Q2)) < 0. Using

T(Q) = 25(Q)S ()~ (21)

where ¥(Q2) is a speed dependent diagonal matrix with
R(X(2);:) > 0, one gets

SA(Q) = —X(9). (22)

The matrix3(2) defines the distances of the closed loop notch
filter poles from the zeros. This distance corresponds to the
convergency rate of filter. Choosing a higigrwill result in

a faster adaption, but also to a filter with higher bandwidth
— and higher bandwidth has impact on a wider frequency
range arounds(j<2) resulting in a potential stability problem.

I(T(Q)) are now transformed to the first state space descriphoosing a smalleE results in a slow adaption, but the notch
tion (2) which will be used for implementation. The observéilter bandwidth can become arbitrarily small so that the filter



has almost no influence on the location of the other poles as

think of a pole/zero cancellation in the transfer function or a 1

root locus plot. () = 180Gl
With equation (21), the matrid'(Q2) is typically a dense . ' . S

matrix depending on the rotationa(l s)peQd This leads to a 2nd is only defined i (jw) is stable.

very complex implementation of the observer gains becauseThe limit values for the radius(2) are

all elements have to be scheduled over the operating range. In max(r(Q2)) =1 (25)

many applications, the sensitivity matrix is diagonal dominant @

and similar in the different channels. If not, it is possible to mén(r(m) =0 (26)

use a static coordinate transformation to improve this proper\l}yherer

It is then ppssible to use () m_atri>.< which is diagonal, f at least=60° and a gain margin df} oo (also known from
probably with a repeated value which is used for all channe Riear quadratic regulator propertieé) an@) — 0 indicates

Gain scheduling becomes much easier to implement in thqﬁg stability boundary. If the adaption matrix is sel¢Q) —

o emain SR | enineer is 1o s (e stability radius becomes
T- © remaining qyesuon or t. e control engineer is to have g g stability radius it is again possible to draw a bode
an idea how a particuldl' () will perform. diagram

(24)

(Q) = 1 indicates good robustness with a phase margin

A. Bode diagram of eigenvalue sensitivities R(jw) = r(Q)|q_,, - (27)

Using again the definition ofA((2) in equation (15) @  Because the radius is a real value, the magnitude diagram
bode diagram helps to investigate the performance and Whtains all the required information. By defining a minimum
robustness of the filter. The performance is defined as the spggghility radius one can selectively improve the adaption matrix

of convergency which can be calculated from the absoluig () at certain rotational speeds and improve the switching
values of 6A(2). The robustness is defined as the phasgrategy of the filter.

reserve the pole has (as seen from the zero on the imaginaryypically, the robustness radius is very closeltdut the
axis) before it crosses the imaginary axis. Drawing a bodgye can significantly decrease over a small speed range close
diagram with to rotor critical speeds. It is therefore vital to switch the filter
. adaption off and on with a speed margin to be also robust
G(jw) = —0A(Q)]o_, (23) 20aP . pe g :
against changes in rotor dynamics such as gyroscopic effects

the magnitude tells us how close we match the performar@elemperature.

requirements and the phase how robust the filter is. Negating=@mbining the necessary phase boundary from (23) and
SA(Q) leads to a phase diagram which(is when the pole the robustness radius (2_4) Iegds to a very hglpful tool that
is located in the stable left half plane with an angledof to  SUPPOItS the control engineer in selecting a s_unable adaption
the zero on the imaginary axis. When the phase96°, the matrix T'(2) and a switching strategy for the filter.

pole lays on the imaginary axis, the stability boundary.

This boundary is a necessary but not sufficient condition
of closed loop stability. The reason for this is that the phaseThe presented tuning guidelines are applied to a simple
of this bode diagram is independent of the selected speednidignetic bearing system. Only one channel is considered. The
convergency — the formula (15) is only valid for sufficientlysystem contains an eigenfrequency at 200Hz and a negative
small changes in the eigenvalues. stiffness component from the magnetic actuator. Figure 2

The presented bode diagram will therefore help to select theows the plant transfer function.
speed ranges where the filter has to be turned off by settingfhe plant is stabilized using a controller with a PID
T(Q) = 0. structure. The integrator, the second order lead element and

the second order low pass filter for the roll-off result in a

controller of order five. Figure 3 shows the transfer function
B. Bode diagram of the robustness radius of the discrete time controller.

To get a sufficient condition for stability, one could use Thg resulti'n.gloutput s_ens.itivity function is shown in figure
nyquist diagrams of the loop gaibq (jw) = N (jw)S(jw) 4. This sensitivity function is useq to tune and analyze the
for each rotational frequency. BecauSéjw) and N (jw) Closed loop stability of the notch filter. .
have no pole in the right hand side of the complex plane, theThe rigid body mode of the closed loop system is around
number of encirclements of the origin dét(I+ L (jw)) has 40Hz, which can be seen in figure 2.
to be zero. This is a little cumbersome if one has to test this
curve for several rotational speeds. Therefore, the circle with Choosingl’(2) = 205(;2) !
the maximum radius is calculated so that the nyquist curvewhen we choosd'(2) as suggested in equation (21), we
touches but does not enter the circle. This radius is fouget
by calculating the infinity norm of the closed loop sensitivity S
functionSq (jw) = (I+La(jw)) L. The radius is then defined T(Q) = 205(j9) (28)

IV. SIMULATION EXAMPLE
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Figure 2. Magnitude of the frequency response of the plarfsolid line) ~ Figure 4. Output sensitivity functio = (1 + GC)~!. The circles ap0°
and the complianc&'; = (1+ GC)~1G (dashed line). The circle at90°  indicate the frequencie® whereTr(Q) = R(S(jQ)~1) changes the sign,
indicates the rigid body mode frequency of the closed loop system. making the open loop notch filter unstable.
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Figure 3. Controller transfer function in discrete time. The controller Consisﬁgure 5. Bode diagram of the convergency rate and the unstable region
of an integrator, a second order lead element and a second order roll-off.in “grey for T(Q) = 25(;Q)~! (solid line) andT'(Q) = 26(Q)S(jQ)~*
(dashed line).

and
dent. Choosing a smallgr(2)| at speeds where the robustness

0A(Q) = —o. (29) radius is small can improve the filter properties. Also the phase
The bode diagram of A(Q) in figure 5 shows a constant linearg(c(2)) can be used to increase the stability radius at low
of magnitudes and a constant phase 0f. This can lead to speeds because at these frequencies the two poles of the filter
the impression that- can be chosen arbitrarily big without;Q2 and —;2 interact with each other so that the eigenvalue
losing the stability of the closed loop. This is of course natensitivity analysis is inaccurate. Figures 5 and 6 show also
the case, because this bode diagram is only a local analytbis two bode diagrams for a tuned<?)
— it is a necessary but not sufficient stability criterion.

20° 6 000);
To investigate the stability at a certain rotational frequency, 0.2¢(5om 22077 Q < 10Hz

the stability radiusr(Q) is plotted in figure 6. The loop 272207 10Hz < Q) < 50Hz

) . o(f2) = (30)
is unstable up to aboutHz and at the eigenfrequency at 0 180Hz < Q < 230Hz
200Hz. Good filter robustness is reached abd¥z where 1 otherwise

the robustness radius ig2) > 0.5.
BecauseT'(2) depends anyway on the rotational frequencyyith a significantly improved robustness at low speeds. Acti-
the convergency rate({2) can also be selected speed deperating the filter at these low speeds does not depend anymore
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on the stability of the filter but on properties of the whol§P€€d, and the filter is not stable below the rigid body mode
system, e.g. minimum desired rate of convergénexternal and around the first bending mode. From this information, the

disturbances like magnetic pull of a synchronous motor, spedigP@lance compensation can be turned on abokz and has
detection and rotor angle estimatfon to be freezed betweel80Hz and230Hz.

A simple improvement can be made by adding one switch-
. ing point where the filter changes from a low speed to a high
B. Choosingl’(Q) = 2¢(Q) speed adaption parameter. According to figure 7 a switching

The simplest case that can be implemented is a constRA{Nt at75Hz seems to be a good compromise resulting in a
adaption matrix7'(2) = 2. This will lead to a very straight Pigger stability region down t80Hz as can be seen in figure 8
forward implementation without gain scheduling®f Figure and 9. Around the bending mode, it is still necessary to freeze
7 shows the effect of this implementation using- 1 — the the adaption.
convergency rate of the filter depends heavily on the rotational

C. Other choices fofl'(Q2)
is Zﬁfggf‘?ﬁéﬁﬁﬁgﬁg@y 02 corresponds to a time constantisf which There are a lot of other choices f&(f2). Each choice
2The speed and angle information for systems with one pulse per revolut¥fill have its benefits when it comes to the 'mplementf’it'on on
is very inaccurate at low speeds. a target system. Computational power, memory requirements,
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implementation complexity but also robustness varies betwee? Singular Vélues |
all these choices. As a rule of thumb one can say that simple Y
adaption matrices will result in simple implementations but9
decrease the robustness of the filter.

o« T(Q) = —K(Q) arg(S(592)): Use only the phase infor-
mation of the sensitivity function. The adaption speed %7 |
chosen from the control system engineer by specifying;
the speed dependent gain matKx(2).

e T(Q) = diag (T;.u(Q)): Use only the diagonal ele- %°
ments of a diagonal dominaf ;,,; (€2). 04

o t(Q)=213"P T(Q);: Use only one adaption parameter
for all cﬂannels by averaging the diagonal elements. ©3

o T(Q2) = T1Taiae(2)T2: Decompose a dense adaption, ,
matrix into two static (not speed dependent) matrikgs
and T, to get a diagonal dominant matrif ., (). °*
Implement the decomposed adaption matrix. It is of
course possible to USE ;4,4 (2) = t(Q)I with ¢(2) from 10° 10t 10? 10°
above.

0.8

Figure 12. Stability radiug(Q) for T(Q) = 2XS(jQ)~! with & = 1.

1
2
V. TESTS
The proposed filter tuning and analysis tools are applied
to a 5-axis test system with a flexible rotor. Figure 10 shows = oI with o = 0.5. This selection will result in a settling
a picture of the system. The magnetic bearing controller tigne of the filter of¢g35, = L = 2s for all channels. The
capable to schedule a dense adaption maf{L) over the output sensitivity functiorS(jw) was measured at standstill.
operating speed range. The resulting stability radius plot is shown in figure 12. From
The radial position controller is tuned with a model basei@is graph one can see that the predicted stability of the notch
design approach and therefore a MIMO controller of ordd#ter is good over the whole speed range.
40 stabilizes the rotor. The control loop runs witldkHz To test the robustness of the filter on the real system, the
sampling frequency. The resulting eigenfrequency of the rigidtor is held at a rotational speed bfHz. According to figure
body modes are abotbHz. 12 the robustness radius is abau$. This indicates a good
Using the simplest implementation of the adaption matristability reserve. To test the robustness and performance of the
T(2) = 2cI for ¢ = 1 results in the bode diagram in figurefilter, one of the integrator states is excited by adding an
11. The filter is unstable below a rotational frequency of aboaffset of 10um while all 10 integrator states (two per axis) are
150Hz and becomes again unstable when crossing the bendingasured. A good robustness is achieved when the response
mode. is similar to a step response of a first order system and only
Using the equation (21) to turiB(f2) results in an improved the excited integrator shows a major reaction — this indicates
range of stability. The convergency raf¥}) was selected as a good decoupling of the different channels. The time the



01 1 1, transforming integrators to accumulators. Applying the euler
51 {1 method to the description (4) will lead to unstable discrete
poles lying outside the unit circle.

A third argument for this implementation are the states
i a1y, Gz, which represent directly the amplitudes of the
01 17 unbalance. These amplitudes are constant because the un-
o 02 04 06 08 1 12 14 16 18 2 balance response itself has constant amplitudes for a given
rotational speed). The state space description (4) has the
same /O behaviour but the states change sinusoidally with
the frequencyf2 for a constant unbalance. This can lead to
numerical problems in the implementation.

Integrator states [pm]
x-Direction
o

=

o
T

I

wu
T
I

Integrator states [pm]
y- and z-Direction
)

B. Smooth switching

0 02 04 06 08 1 12 14 16 18 2 An additionf_;ll impprtant point is that j[he mat_riT(Q)_
Time [s] is used to build theinput matrix of the filter. Using this
input matrix itself as a similarity transformation, one can also
Figure 13. Step responses of an integrator excitationdpim at a speed of think of an implementation wher® () is used to build the
15Hz of the test rig. The initial values of the integrator states were subtract%tput matrix of the filter and the input matrix is a unitary
matrix. The I/O behaviour will be the same but the meaning

: f. the states will change. Whe'(2) is not smooth, the
integrator state needs to converge back to the steady state ) ) . . .

. . . . compensation signat(t) will contain transients whenever
value gives an information about the performance which w.

specified byo. Figure 13 shows the step responses separat 89) change_s under rotation because the filter states will
onverge to different values.

in x- and y/z-direction. The integrator for the cosine amplitud% i - .
of the second bearing is excited. The reaction is clearly visi IeThe authors of [5] chose d|scret_e SW'tCh.mg points to change
tween different constant adaption matrices — and because

=

o
T
I

in the figure. Th nvergency r rr nds nicel _ . . .
the figure e convergency rate corresponds nicely to t 8e adaption was applied at the output of the filter, a smoothing

trategy was necessary. Such kind of smoothing can be avoided
en the adaption matrix is used as the input of the notch filter.

selected2s. The integrator of the cosine amplitude of the firs
bearing shows also a significant reaction — it seems that t
decoupling of the two bearings in the adaption matrix is nd
optimal. All the other reactions are small, but they are present.
This was to be expected due to the slightly reduced stabili@; Discrete simulation

radlﬁg. L , il to | ) he fil To simulate the discrete time closed loop system at a certain
This excitation test is very useful to investigate the 'telrot@tional speed, the system description (31) is transformed

robustness .am.j performance at different rotational speeds ae g the similarity transformation (3), resulting in the state
can be easily included in a standard measurement set d“ré?)%ce description

z

Alk +

L2k

commissioning of a rotor.
cos( I —sin(Q)I

sin(Q)I  cos(Qts)1

Lipy1|
VI. IMPLEMENTATION ASPECTS . =
. . L2k+1

A. Discrete state space representation

The state space description (16) is used to implement the cos(§ts)T —sin(Qt)I| | Tr(Q) er (32)
observer because the state matrix does not depefid bising sin(Qts)I  cos(Qts)I | | T(2)
the euler method, the discrete form of the observer is &
o1 o)
o ~ L2k
Aip4+1| _ A1k
LL% 1] - lek + This description has constant matrices for a constant rotational
* ’ speed(. It corresponds to the discrete approximation of the
Tr(Q2) —T;(Q)]| |sin(Qg) . (31) state space description (4) using the impulse invariant method
s k
TJ(Q) TR(Q) COS(th) [6]
— |g @y, VIl. CONCLUSION
cp = [sm(th)I cos(th)I} R .
@2k The generalized notch filter stability has been shown by
where t, is the sampling interval and, = kt,. The using a sensitivity analysis of the eigenvalues of the notch
sampling intervalt; can be included in the paramet®(Q2) filter when closing the control loop.
to save some multiplication instructions. From this result, different possibilities of selecting the

A second argument for this implementation is the stability afdaption matrixT'(€2) are shown and their effect on robustness
this filter. The euler method will map the poles at the origin tand performance was analyzed with the help of bode diagrams



of the eigenvalue sensitivity A (2) and a robustness radius

T(Q) [l]
A simple example with one channel has verified the use-

fulness of the bode diagrams to investigate the filter stability,
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APPENDIX -
A. Sensitivity of multiple eigenvalues .
The following derivation of the sensitivity of eigenvalues o%
a matrix is based on [7] and [8]. -
Given is a symmetric matrixA, with an eigenvalue\
with multiplicity m and the corresponding right eigenvectors

Up = |ug u? u7*| and left eigenvectorsvV, =

[v}, v3 'vg"}. The eigenvalue equations are
AoUp = \Up (33)
VaAo=M\Vy. (34)

Now we define a perturbed matrik with perturbed eigenval-
uesA and perturbed right eigenvectots®

A =Ag+5A (35)
A =L+ 6A (36)
U =UpX (37)

wheredA is a known perturbationd A is a diagonal matrix
expressing the sensitivity of the eigenvalugd. X is a matrix

of full rank m. The eigenvalue equation of the perturbed matrix
is

AU = UA. (38)
Using (35) - (37) gives

(Ao + 6A)UpX = UgX(AoI + JA). (39)
Expanding and multiplying wittV from the left gives

Vi dAUgX = Vi UpXsA

= (Vg Up) 'VIFAUX = XA (40)

which is again an eigenvalue equation with the eigenvalues
0A and the right eigenvectorX. It follows that

SA = eig (Vg Ug) 'V§AU) (41)

which means that the eigenvalue sensitivitx can be ex-
pressed by the unperturbed eigenvectbfs, Vo and the
perturbationd A.

3The same result is obtained when definil = (Up + 6U)X and
neglecting products of-terms of higher order.
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