
 

Abstract — In this paper, an unbalance vibration suppression 

method based on flux feedback control strategy is proposed. The 

air gap flux is obtained from an improved flux observer. The 

principle of generalized notch filter is analyzed in detail and the 

transmission matrix parameters are reasonably designed so that 

the system can keep stable in a wide speed range. The simulation 

results show that adding generalized notch filter algorithm into 

the control system can restrain the vibration force caused by the 

mass unbalance of rotor during rotation. 

I. INTRODUCTION 

Compared with the conventional bearings, magnetic 

bearings have been widely used in the high-speed motor, 

aerospace and other fields with no wear, no friction, no 

lubrication and other excellent characteristics [1-3]. Due to the 

limitation of material and machining level, there is unbalanced 

mass in the magnetic suspension rotor inevitably which results 

in the periodic fluctuations of the displacement signal when the 

rotor rotates [4][5]. Therefore, a periodic vibration force is 

generated in the electromagnetic actuator to cause vibration of 

the rotor and the base. Because the magnitude of force is 

proportional to the square of the rotational speed [6], the 

stability of the magnetic bearing system will be seriously 

damaged when the vibration force reaches a certain degree.  

The unbalanced vibration suppression schemes mostly 

eliminate the same frequency component in the displacement 

or current signal. Betschon F et al. [7] effectively reduced the 

current amplitude in magnetic bearing coils by using variable 

gain control at different speeds. Shi et al. [8] adopted the least 

mean square (LMS) algorithm to generate equal-gain and anti-

phase signals of the same frequency for the feed-forward 

compensation of same-frequency current. After adding this 

control strategy to the control loop, vibration force derived 

from current stiffness with the same frequency is eliminated. 

Herzog R et al. [9] used a classical notch filter method to 

suppress unbalanced vibration forces. On this basis, in order to 

make the closed-loop system stability adjustable, they also 

proposed a generalized notch filter method. The above 

literature results show that suppressing the same frequency 

component of current can significantly reduce the same-

frequency vibration force. However, the unbalanced vibration 

force of the rotor is difficult to eliminate completely due to the 

displacement negative stiffness force generated by rotor axis 

deviation [10].  

 In this regard, considering the direct relation between 

magnetic flux and force, an unbalanced vibration suppression 

method based on flux feedback control is proposed in this 

paper. A generalized notch filter is used to suppress the same 

frequency component in the magnetic flux signal to achieve 

complete elimination of unbalance vibration force. To 

configure the closed-loop pole of system by selecting the 

parameter of the transmission matrix properly, the sensitivity 

function of the system is analyzed based on the transfer 

function of the actual control system. By this way, the stability 

of the control system in a large rotational speed range can be 

ensured after adding the generalized notch filter. Finally, the 

validity of the method is verified by simulation. 

II. ESTABLISHMENT OF FLUX FEEDBACK CONTROL SYSTEM 

 Considering the direction of the electromagnetic force F 

and the rotor displacement x in the figure, the levitation force 

of the rotor can be expressed as follow: 

( ) ( )
2 2

0= p c p c aF A     + − −
  

 (1) 

where
p and c denote bias flux and control flux 

respectively; aA  is the magnetic pole equivalent cross-

sectional area and 0  is the space permeability. 
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Fig. 1.   Block Diagram of Imbalance Compensation Based on  

Flux Feedback Control 

Simplify Eq. (1): 

0=4 p c aF A    (2) 

It can be seen from the above equation that when the bias 

magnetic flux is a constant value, the levitation force of the 

flux-controlled magnetic bearing rotor is linearly related to the 

control magnetic flux. Therefore, the levitation force can be 

controlled accurately by adjusting the control magnetic flux. 

The conventional magnetic bearing control scheme 

introduces a bias current to linearize the levitation force 

expression for a linear relationship between the levitation force, 

the displacement, and the current. This control method does 

not consider magnetic properties such as magnetic saturation, 

eddy current, hysteresis, etc. And when the rotor's 
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displacement fluctuates greatly, the nonlinear relationship 

between the levitation force, current and displacement makes 

the performance of the current control scheme disappointing. 

In the flux control scheme, the control magnetic flux is strictly 

linear with the levitation force and is independent of the rotor 

position. Therefore, it can completely eliminate the adverse 

effects of the above factors in the previous control scheme. 

III. DESIGN OF FLUX OBSERVER 

The difficulties in implementing the flux feedback control 

scheme mainly focus on how to acquire the air gap magnetic 

flux. Due to the small air gap of the active magnetic bearing, 

which is usually 0.4mm-0.6mm, conventional Hall effect 

sensors are difficult to apply in such applications [11]. 

Therefore, the observer method is used in this paper to obtain 

the air gap magnetic flux. 

The common flux observer is divided into current model 

and voltage model [12]. The air gap flux in the current model 

can be expressed as: 

0 02im aN A i s =  (3) 

where N  is the turns of winding coil， 0s  is the air gap length 

when the rotor is in an equilibrium position and i  is the coil 

current. 
In the Eq. (3), some factors such as magnetic resistance, 

eddy current, magnetic saturation, and rotor position change of 

the stator core are neglected. Therefore, this model is accurate 

only if when the rotor is in a static or low frequency state. 

The air gap magnetic flux calculated by the voltage model 

can be expressed as: 

( )um u Ri dt = −  (4) 

where u the winding terminal voltage, R the coil resistance. 

The current model is relatively simple but the error is large 

when the rotor is in a high frequency state due to neglecting 

the effect of air gap variation on the magnetic flux. The 

voltage model is more accurate in the high frequency range, 

but the problem of integral saturation caused by the DC bias in 

the pure integral link makes the model to be less effective in 

the low frequency range. Therefore, the current model is 

modified to fully consider the stator core magnetic circuit, and 

the rotor real-time position information obtained by the 

displacement sensor is substituted into the observer model for 

calculation in this paper. 

In order to verify the accuracy of the current model, the air 

gap flux density was calculated from it in the following eight-

pole heteropolar magnetic bearing structure, and the calculated 

results are compared with the finite element results. The 

material of the stator and rotor is B20AT1500. The structure 

of the magnetic bearing is shown in Fig 2. 
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Fig. 2.   Radial magnetic bearing section structure 

Structural parameters are shown in Table 1: 
Table 1.   Properties of the AMB. 

Property Value 

Rotor radius 35mm 

Air gap length 0.4mm 

Inner diameter of pole piece 35.4mm 

Magnetic pole inner diameter 36.4mm 

Magnetic pole outside 

diameter 
77mm 

Magnetic yoke inner diameter 62mm 

Axial thickness 25mm 

Pole boots Polar Arc Span 28.5° 

Pole/yoke pole arc span 22.5° 

B20AT1500 Magnetic 

permeability 
0.0078H/m 

According to the finite element simulation results, this kind 

of structural magnetic circuit is simple and there is few 

magnetic leakage, so the magnetic potential can be considered 

to be all distributed on ferromagnetic materials and air gaps. 

Compared to air gaps, the small magnetic reluctance of 

ferromagnetic materials is neglected in calculations. The air 

gap flux density can be calculated by the following equation: 

2r a gB Ni A R=  (5) 

where 
gR represents the magnetoresistance of air gaps. The 

expressions are as follow: 

( ) 0

22.5
cos

2
g r aR g x A

 
= +  
 

 (6) 

Where rg is the air gap length when the rotor is in an 

equilibrium position and x  is the actual displacement of the 

rotor. And we assume that the down direction is positive. 

In the two typical cases where the displacement is fixed in 

the equilibrium position and the current varies and when the 

current is fixed in the typical 3A and the displacement varies, 

the comparison results of magnetic circuit method and finite 

element method are shown in Figure 3 and Figure 4 

respectively.  
 



 

 
Fig. 3.  Rotor displacement is fixed in the equilibrium position and the 

current varies. 

 
Fig. 4.   Coil current is fixed in the typical 3A and the rotor displacement 

varies. 

When the ferromagnetic material is in the magnetized linear 

region, the error between the magnetic circuit model and the 

finite element model is quite small. When the coil current 

exceeds 5A (over the actual operating current range), the non-

linear characteristics of the material B-H curve need to be 

taken into account. 

IV. DESIGN AND STABILITY ANALYSIS OF GENERALIZED 

NOTCH FILTER  

Compared to the classical notch filter, the generalized notch 

filter introduces the transfer matrix T so that its poles can be 

freely configured. The block diagram of the magnetic bearing 

control system including the generalized notch filter is shown 

in the Figure. 5: 
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Fig. 5.   Block diagram of magnetic bearing system with generalized notch 

filter 

In the figure above, ( )C s , ( )P s and ( )H s represents the 

transfer function of controllers, magnetic bearings and the 

displacement sensors respectively. 

Use ( )t  and ( )c t  to denote the open loop input and output 

signals of the generalized notch filter respectively.  

( ) ( ) ( )
( ) ( )

( ) ( )

sin
sin cos

cos

R J

J R

T T t t
c t t t dt

T T t t





−    
=            

  (8) 

Do the following variable substitution: 

( ) ( )

( ) ( )

( ) ( )

sin cos

sin

cos

R J

J R

A t t

t t
B dt

t t

T T
T

T T








=    
   

=  
 

 −  =    

  (9) 

Substitute (9) into (8) and derivatives on both sides of the 

equation: 

( ) 2c t ATB ATB ATB= + +  (10) 

After the expansion: 

( ) ( ) ( ) ( )2

J Rc t c t T t T t = − − +  (11) 

Performing Laplace transformation of Eq. (11): 

( ) ( ) ( ) ( )2 2

J Rs C t C s T s sT s + = − +  (12) 

The open-loop and closed-loop transfer functions of the 

generalized notch filter are as follows：  

( )
( )

( ) 2 2

R J

f

s T s T
N s

C s s

 −
= =

+
 (13) 

( )
( )

2 2

2 2

1

1 f R J

s
N s

N s s T s T  

+
= =

+ + + − 
 (14) 

According to the closed-loop transfer function expression, 

when the equation satisfies the condition that 0  and 

 = , generalized notch filter will attenuate the signal at a 

specific frequency to zero. 
Restate the generalized notch closed-loop transfer function 

as follows: 

( )
( )( )

2 2s
N s

s p s p

+
=

− −
 (15) 

Consider that: 
jp j re = +  (16) 

Substituting equation (16) into equation (15)，when r   

we can expand the equation to: 

( )
( ) ( )

2 2

2 22 cos 2 sin

s
N s

s r s r 

+
=

− + + 
 (17) 

Comparing equations (17) and (14), we can solve that: 

( )arg

1

2

R J

R J

T jT

r T jT

 



= + +



= +


 (18) 

The closed-loop transfer function poles of the generalized 

notch filter are shown in Fig. 5. 
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Fig. 6.   Pole/zero locations of the generalized notch filter N(s). 

It can be seen from Eq. (18) and Fig. 6 that compared with the 

classical notch filter, the generalized notch filter can change 

the closed-loop pole distribution of the notch filter by 

adjusting the parameters of the transfer matrix. When the 

transfer matrix is an identity matrix, the generalized notch 

filter is identical to the classical notch filter.  

Simplified system control block diagram is shown in Fig.7: 

( )S s ( )fN s
( )e t


−

 
Fig. 7.   Simplified system control block diagram. 

Where ( )S s  is the whole system closed-loop sensitivity 

function and ( )fN s the open loop transfer function of 

generalized notch filter. 
It can be seen from the above figure that the closed-loop 

eigenvalue of the system after adding the generalized notch 

filter is the root of the following polynomial: 

( ) ( )1 0fN s S s+ =  (19) 

Substituting Eq. (13) into Eq. (19): 

( ) ( )2 2 0R Js sT T S s+ + − =  (20) 

When the gain is satisfied =0 ,the characteristic polynomial 

has dual characteristic root at s j=   of the imaginary axis. 

When the gain changes, the eigenvalues will also change. 

Therefore, the characteristic value is recorded as ( )s  . When 

the gain approaches 0，We can ensure that the starting angle 

( )arg 0s =     of the system root locus at the starting point 

s j=   is within 
3

2 2

  
 
 

，  by designing a reasonable transfer 

matrix value. At this point we can guarantee that when the gain 

satisfies     (   is a certain large gain value) the closed-

loop poles of the system are all located in the left half plane, 

and the system remains stable. 

Derivatives on both side of the Eq. (20): 

( )
( )

( )( ) ( )( )

( )( ) ( )( )

2

0

R J

R J

ds
s s T T S s

d

d s T T S s

d


  



 




+ −

 − 
+  =

  (21) 

Substituting 
( )

0

0s j

 =


= 
 into Eq. 21: 

( )
( ) ( ) ( )

0

1
0

2
R J

s
s T jT S j






=


= = − + 


 (22) 

From Eq. (22), we can infer that select appropriate transfer 

matrix parameters based on the system sensitivity function 

value ( )S j , the start angle of the root trajectory   can be 

configured. When the transfer function parameter value is 

satisfied that ( ) ( )1

R JT jT S j−+ =  , The starting angle of the 

root locus at the imaginary axis is 180 , the closed-loop 

system can remain stable over a large gain range. 

V. SIMULATION VERIFICATION 

In the MATLAB/SIMULINK simulation environment, a 

magnetic suspension control algorithm based on magnetic flux 

feedback control strategy was built, and a generalized notch 

filter was added to suppress the same-frequency vibration 

force.  

Prototype simulation parameters are as follows: rotor mass 

36kg, winding turns 164, winding inductance 16.9mH ，

winding resistance 6 ,bias flux 43.063 10 wb− , the rotor 

speed is set to 18000rpm. 

Respectively, we add generalized notch filter to the current 

control scheme (A) and flux control scheme (B) two cases. 

The simulation results are shown as Fig. 8 to Fig.10. 

Fig. 8 represents AMB air gap, Fig. 9 represents winding 

current and gap flux, and Fig. 10 represents magnetic force. 

Taking into account the gravity of the rotor itself, Fig. 9 shows 

that the same frequency component of the controlled quantity 

can be attenuated to an extremely low level in both current and 

flux control schemes. However, in the Fig. 10, the synchronous 

magnetic vibration force fluctuation only convergence down to 

8N due to the influence of negative displacement stiffness in 

current control method.  

 

 
Fig. 8.   Actual rotor displacement. 



 

 
Fig. 9.   AMB coil current and gap flux. 

 
Fig. 10.   Magnetic force under two control schemes. 

VI. CONCLUSIONS 

This paper presents an active vibration control method for  

magnetic suspension rotor based on flux feedback control. The 

flux observer was designed according to the parameters of the 

magnetic bearing, and the results were compared with the 

finite element simulation results to verify the accuracy of the 

observer model. The generalized notch filter is used to 

suppress the same frequency component in the magnetic flux, 

and the parameters of the notch filter are reasonably designed 

to ensure the stability of the closed-loop system. Finally, the 

above work is analyzed and simulated in detail. Compared to 

the current-mode control method, the suppression of the same 

frequency in the flux control scheme can completely eliminate 

the unbalanced vibration force of the rotor. 
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