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Abstract—Direct flux density control of active magnetic bear-
ings is a promising approach to increase controller accuracy or
reduce the system’s price. New, ultra-thin Bismuth Hall Sensors
provide the possibility to measure the air gap flux density directly.
The paper presents the modelling of different bearing types
and compares different control approaches with flux density
measurement.
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surement, Hall sensor, direct field control, state space control,
cascade control, pole placement, optimal control, eddy current,
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I. INTRODUCTION

Active magnetic bearings (AMB) are more and more com-
monly used in high-speed applications (e.g. flywheel accumu-
lators) because of the low friction losses. Additionally, they
can be used for active damping of spindle drives. Since an
AMB is a non-linear, inherently unstable system, the design of
the control strategy is very important for the dynamic stability
and accuracy of the drive. The most straightforward control
approach is a displacement control with an inner current
control loop. This is the state of the art and has proven to
offer decent robustness and precision.

In order to improve the precision of positioning and the
dynamic stiffness of AMB, flux based control algorithms were
suggested in [1]. A direct flux control requires real-time data of
the air gap flux density which can be acquired by observers [2]
or measurements. The latter is a possibility for low-cost AMB
operating without expensive position gauges [3].

To measure the air gap flux density, Hall sensors need to
be placed within the air gap. With nominal air gap distances
of 500 µm or less, ultra-thin sensors are required. Recent
research shows promising results in fabricating 100 µm thin
Bismuth Hall sensors that enable air gap integrated flux density
measurement [4], [5].

After a proof-of-concept of these new Hall sensors were
presented in [6], this paper focuses on a more detailed analysis
and comparison of direct flux control strategies with flux
density measurement. The test rig consists of a radial hybrid
bearing (HB) as the first radial bearing and a combined
radial/thrust hybrid bearing (CB) to complete the five-axis
bearing. A motor between the HB and the CB allows rotation
up to 3000 rpm. The control algorithms are tested in a full
five-axis Matlab Simulink simulation including the influence
of the voltage source converter (VSC). Fig. 1 shows the set-up
of the test rig.

This paper presents calculations and boundary conditions
for the flux-based model (section II). Then, cascaded current
control and cascaded flux density control (section III) will
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Fig. 1. Drawing of the test rig with the combined radial/thrust bearing left
and the hybrid bearing right

be introduced. A state space control approach with different
pole placement options is presented in section IV will be
introduced. The paper concludes with a comparison and further
optimisation approaches (section V).

II. AMB MODEL

The model of the AMB consist of an inverter, the flux
density plant and the mechanical model. The inverter is repre-
sented by a time delay Tvsc. The mechanical model uses the
reduced mass1 mr and a double integration to find the position
x from the force F

x(s) =
1

mrs2
F (s) . (1)

A. Magnetic force

Since the magnetic force model is non linear, it is linearised
around the desired operation point (shaft in the centre of the
AMB). Fig. 2 shows the HB setup for the x-axis. Considering
the attracting magnetic force for one pole with air gap area Aδ

as

Fp =
B2Aδ

2µ0
=

Φ2

2µ0Aδ
. (2)

The total force applied to the shaft by the HB in one direction
(here x-axis) Fx can be described as

Fx HB = (Fx1l + Fx1r)− (Fx2l + Fx2r) (3)

1The reduced mass describes the mass which actually needs to be accel-
erated by the bearing. It considers the shaft’s centre of gravity, weight force
and mass moment of inertia.
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Fig. 2. Setup, flux and current definitions for the x-axis of the hybrid bearing

with indices l and r for left and right, respectively. The left
and the right side of the HB are identical, so that (3) with (2)
yields

Fx HB =
2(Φvx1 + Φxx1)2 − 2(Φvx2 − Φxx2)2

2µ0Aδ
. (4)

For the calculation of the radial forces, the CB can be consid-
ered half an HB. This leads to

Fx CB =
(Φvx1 + Φxx1)2 − (Φvx2 − Φxx2)2

2µ0Aδ
. (5)

The thrust bearing has one disc where the CM’s total PM flux
splits to the bias flux in z-direction Φvz1 and the bias flux in
negative z-direction Φvz2. The axial control flux Φxz is constant
over the disc’s active area so that the force is

Fz =
(Φvz1 + Φxz)2 − (−Φvz2 + Φxz)2

2µ0Aδ
. (6)

The index HB will not be explicitly indicated in the following
sections. All calculations refer to the HB unless otherwise
stated.

B. Magnetic equivalent circuit – bias flux

In order to calculate Φv and Φx, the reluctances of the
system are required. Neglecting the iron reluctance for the bias
flux because of the permanent magnets (PM) with µrPM ≈ 1
and µrFE � 1 leads to the magnetic equivalent circuit shown
in Fig. 3. Now considering that the left and the right half of the
HB are identical and the permanent magnets are symmetrically
placed within the bearing, we can simplify the circuit in Fig. 3.
For the middle PM part it yields

ΘPMx1 = ΘPMx2 = ΘPMy1 = ΘPMy2 = ΘPM (7)
RmPMx1 = RmPMx2 = RmPMy1 = RmPMy2 = RmPM (8)

ΦPMx1 + ΦPMx2 + ΦPMy1 + ΦPMy2 = ΦPM (9)
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Fig. 3. Magnetic equivalent circuit of the HB for bias flux

and for the radial air gaps

Rmδxνl = Rmδxνr = Rmδxν (10)
Rmδyνl = Rmδyνr = Rmδyν (11)
Φvxνl = Φvxνr = Φvxν (12)
Φvyνl = Φvyνr = Φvyν (13)

with ν = {1, 2}. The reluctances Rm can be calculated with
the nominal, radial air gap distance δr and the pole air gap
area Aδ. They depend on the shaft’s position.

Rmδx1 =
δr − x
µ0Aδ

, Rmδx2 =
δr + x

µ0Aδ
, (14)

Rmδy1 =
δr − y
µ0Aδ

, Rmδy2 =
δr + y

µ0Aδ
, (15)

RmPM =
lPM

µ0µrPMAPM
, Rmδ0 =

δr
µ0Aδ

. (16)

The combined air gap reluctance Rmδ(x, y) for the left and
the right poles of the HB can be calculated by the rules of
parallel connection. The x- and y-axis should be controlled
independently, therefore y = 0 is assumed for analysing the
x-axis (and vice versa). This leads to

Rmδ(x, y = 0) = Rmδx1 ‖ Rmδx2 ‖ Rmδy1 ‖ Rmδy2

= Rmδx1 ‖ Rmδx2 ‖
1

2
Rmδ0

=
δr

2µ0Aδ

(
δ2

r − x2

2δ2
r − x2

)
. (17)

Eq. (14), (15) and (17) are used to calculate the bias flux of
the poles

Φvx1

ΦPM
=

Rmδ

Rmδx1
=

δr(δr + x)

2(2δ2
r − x2)

(18)

Φvx2

ΦPM
=

Rmδ

Rmδx2
=

δr(δr − x)

2(2δ2
r − x2)

(19)

Φvy1

ΦPM
=
Φvy2

ΦPM
=

Rmδ

Rmδy
=

(δ2
r − x2)

2δ2
r − x2

. (20)

Using (16), (17) and ΘPM = HclPM(1− kPM) yields

ΦPM =
ΘPM

Rtot
=

ΘPM
1
4RmPM + 2Rmδ

=
4µ0µrPM lPMAPMAδHckPM(2δ2

r − x2)

lPMAδ(2δ2
r − x2) + µrPMAPMδr(δ2

r − x2)
(21)

for y = 0 and where kPM considers PM leakage and is
found by experiments. Using the parameters from Table I, a



deviation of 0.11 % can be estimated when using x = 0 instead
of x = 50 µm which is considered negligible and leads to (22).

ΦPM(x) ≈ ΦPM(x = 0) =
8µ0µrPM lPMAPMAδHckPM

2lPMAδ + µrPMAPMδr
(22)

With a non-displaced shaft the PM flux splits equally to all
four poles and is called pole bias flux

Φv =
1

4
ΦPM(x = 0, y = 0) . (23)

For the bias flux density follows

Bv =
Φv

Aδ
. (24)

Eq. (18), (19) and (22) can be used in (4). The calculations
are valid for the y-axis analogously.

Similar calculations can be conducted for the CB. The “left
poles” in Fig. 3 are replaced with the equivalent circuit for the
thrust bearing – two parallel air gap reluctances

Rmδz(z) = Rmδz1 ‖ Rmδz2 =
δa + z

µ0 ·As
‖ δa − z
µ0 ·As

=
δ2
a − z2

2µ0δaAs
. (25)

The total reluctance Rtot CB of the CB is different to those of
the HB. Therefore (22) changes to2

ΦPM CB =
ΘPM CB

1
4RmPM +Rmδz +Rmδ

(26)

and
Φv CB =

1

4
ΦPM CB(x = 0, y = 0, z = 0) (27)

can be defined for the bias flux in one radial bearing pole.
Eq. (18) to (20) are valid for the CB when considering

the different parameters. The y-axis can be found analogously.
Similar calculations for the thrust bearing yield

Φvz1

ΦPM CB
=

Rmδz

Rmδz1
=
δa + z

2δa
(28a)

Φvz2

ΦPM CB
=

Rmδz

Rmδz2
=
δa − z

2δa
. (28b)

C. Magnetic equivalent circuit – control flux

Due to µrPM � µrFE the PM in Fig. 2 can be considered
flux barriers for Φx and therefore the iron reluctance is not
negligible for calculating Φx. This leads to the magnetic
equivalent circuit in Fig. 4. Rmsz is the reluctance of one
stator tooth, Rmsr represents the stator spine’s reluctance. As
in section II-B, y = 0 and iy = 0 are assumed for analysing
the x-axis. The stator iron reluctances can be conflated to Rms

using the symmetry of the circuit. The same can be done with
the rotor iron reluctance Rmrr (not shown in Fig. 4), resulting
in an iron equivalent reluctance for every axis

RmFe = Rms +Rmr = Rmsz +
Rmsr

8
+
Rmrr

8
. (29)

This leads to significant simplifications shown in the lower
circuit of Fig. 4 which can be solved analytically. Introducing

Rmx1 = Rmδx1 +RmFe , Rmx2 = Rmδx2 +RmFe ,(30)

Rmy =
Rmδ0 +RmFe

2
, (31)

2Again, evaluating ΦPM at (x, y, z) = (0, 0, 0) leads to a negligible error
compared with ΦPM(x, y, z).
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Fig. 4. Magnetic equivalent circuit of one side of the HB for control flux

the left and the right mash can be solved to

ix · w = Φxx2 ·Rmx2 − Φxy ·Rmy , (32a)
ix · w = Φxx1 ·Rmx1 + Φxy ·Rmy , (32b)

respectively. With

Φxx1 = Φxx2 + Φxy (33)

the control flux can be found:

Φxx1 =
ix · w · ks · (Rmx2 + 2Rmy)

Rmx1Rmx2 +Rmy(Rmx1 +Rmx2)
(34a)

Φxx2 =
ix · w · ks · (Rmx1 + 2Rmy)

Rmx1Rmx2 +Rmy(Rmx1 +Rmx2)
. (34b)

These calculations are valid for the y-axis and the CB analo-
gously. The axial control flux can be calculated from the series
connection of the two axial air gap reluctances Rmδz1 +Rmδz2

and a constant reluctance RmFez conflating all iron reluctances
relevant for the thrust baring

Φxz =
iz · w · ks

Rmδz1 +Rmδz2 +RmFez

=
µ0 ·As · iz · w · ks

2δa + µ0AsRmFez
. (35)

D. Linearisation

The resulting force for every axis of the AMB can now be
calculated. The non-linear equations (4), (5) and (6) should be
linearised in a form for current control

F (i, x) = ki · i+ kx · x (36)

or for flux density control

F (Bx, x) = kB ·Bx + kx · x . (37)
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A Taylor expansion is used to linearise the non-linear force
equations around the bearing centre (x = 0, y = 0, z = 0,
Φx = 0) and find the factors ki, kx and kB in (36) and (37):

ki• =
∂F•(Φx•, a•)

∂ix•

∣∣∣∣
ix•=0,a•=0

(38a)

kx• =
∂F•(Φx•, a•)

∂ax•

∣∣∣∣
Φx•=0,a•=0

(38b)

kB• = A• · kΦ• =
∂F•(Φx•, a•)

∂Φx•

∣∣∣∣
Φx•=0,a•=0

(38c)

where • indicates the corresponding bearing and axis and
a• the displacement in the direction of this axis3. The force
equations for F• can be taken from (4), (5) and (6). The needed
expressions for substituting the bias flux Φv• are given in (18),
(19), (22), (26) and (28). The equations for the control flux Φx•
can be found in (34) and (35).

TABLE I. MODEL PARAMETERS

Parameter Symbol Value Unit

Radial air gap δr 0.5 mm
Axial air gap δa 0.5 mm
Radial air gap area (HB) AδHB 2.24 cm2

Radial air gap area (CB) AδCB 3.47 cm2

Active disc area As 38.2 cm2

Rated force (HB) FnHB 108 N
Rated force radial (CB) FnrCB 143 N
Rated force axial (CB) FnaCB 52.3 N
Mass of shaft m 2.46 kg
Reduced mass (HB) mr HB 1.56 kg
Reduced mass (CB) mr CB 1.56 kg
Leakage coefficient ks 0.95
PM leakage coefficient (HB) kPMHB 0.67
PM leakage coefficient (CB) kPMCB 0.68
PM Flux (HB) ΦPMHB 349.8 µWb
PM Flux (CB) ΦPMCB 708.9 µWb
Bias flux density (HB) BvHB 0.39 T
Bias flux density (CB) Bv CB 0.51 T

3So a• can be x, y, z.

The equation can be solved for the different bearing types
to the terms given in Table II. All parameters additionally
needed for the controller design are summarized in Table I.

TABLE II. LINEARISATION PARAMETERS FOR BOTH AMB TOPOLOGIES

Parameter HB CBr CBa

ki
wksΦPM

µ0AδRmFe + δr

0.5 · wksΦPM

µ0AδRmFe + δr

wksΦPMCB

µ0AsRmFez + 2δa

kx
Φ2
PM

4µ0δrAδ

Φ2
PM

8µ0δrAδ

Φ2
PMCB

2µ0δaAs

kB Bv
4Aδ

µ0
Bv CB

2Aδ

µ0

δaΦPMCB

µ0(4δ0 + µ0AsRmFez)

ki in N/A 38.30 61.60 57.56
kx in N/mm 217.2 288.3 104.7
kB in N/T 275.5 278.9 232.3

III. CASCADED CONTROL

All control algorithms are written in C and are called as s-
functions in the MATLAB Simulink model for the AMB. The
response to a 10 µm command value step and a 5 N disturbance
force step are compared for the different approaches.

A. Current control

A cascaded current control (I-control) is designed as a
state-of-the-art reference for the comparison. Fig. 5 shows the
block diagram of the current control. The lightning indicates
that this feedback is just correct without the consideration of
eddy currents nor leakage because the measured current in
total is assumed to be force creating [7]. Position measurement
is mandatory for this control approach. The inner PI current
controller is designed by the method of optimum amplitude for
an optimal command response. A PID controller is needed for
the outer position control loop due to the positive Feedback.
For the design of the PID controller the AMB is described as
a spring-damper system

Fsd = −k · x− d · ẋ (39)



with stiffness k and damping d. Eq. (39) and (36) lead to an
equation for the control current

ix = − (k + kx)x+ dẋ

ki
. (40)

This system needs a PD controller for stabilisation which is
technically not realisable. Therefore a PIDT2 controller

Gx = Kpx

(
1 +

1

sTix
+

sTd

s2T 2
f + s2DfTf + 1

)
(41)

with

Kpx =
k + kx

ki
and Td =

d

k + kx
(42)

is designed. kx and ki are given in Table II, k and d can be
chosen regarding to the desired behaviour of the bearing. The
stiffness is set k = kx and Lehr’s damping ratio ξ = 0.3 is
used for finding the rate time [8], [9]

d = 2 ·mr · ξ · ω0 with ω0 =

√
k

mr
(43)

⇒ Td =
2 · ξ ·

√
k ·mr

k + kx
. (44)

A small reset time Ti leads to quick a cancellation of control
errors but Ti should be larger than the reciprocal of the natural
frequency ω0 (choice: Ti = 0.159 s). The filter parameters are
chosen so that measurement noise is filtered. This leads to
Tf = 0.177 ms and Df = 0.7.

B. Flux density control

The flux density based control strategy (B-control) over-
comes the drawbacks of the current control since the air gap
flux density is directly force-creating and inherently considers
eddy currents and leakage. The block diagram from Fig. 5 can
be transformed into a cascaded flux density control (Fig. 6).
The command response can be improved due to consideration
of the displacement-dependent force as a disturbance in the
faster, inner control loop. For the first attempt, the con-
trollers are designed analogously to section III-A. The results
compared to the I-control are shown in Fig. 7. Experiments
show, that the disturbance Bm(x) causes steady state control
errors, due to the small I-part of the inner PI-controller when
designing the inner control loop with amplitude optimum
(AO). Therefore, the flux density controller is designed with
symmetrical optimum (SO) and a = 3 [10]. The results are
also shown in Fig. 7. The design with SO shows less overshot
and oscillation for command and disturbance response, so that
the SO will be used subsequently.

IV. STATE SPACE CONTROL

Due to the positive feedback, the outer loop controllers
described above need a differential element to stabilise the
system. This D-part causes a big overshoot. Model-based
control approaches can overcome this problem and reduce the
overshoot.

1 1.05 1.1 1.15 1.2

−20

−10

0

10

20

30

Time in s

D
is

pl
ac

em
en

t
in

µm

1.5 1.6 1.7
Time in s

x1ref

x1 – I-control
x1 – B-control (AO)
x1 – B-control (SO)

Fig. 7. Simulated command and disturbance response (Fd = 5 N at t = 1.5 s)
for current control and flux density control

A. State space model

A commonly known control method is state feedback or
state space control (SS-control). The system with flux density
feedback from Fig. 6 can be modelled as

ẋ = Ax + Bu (45a)
y = Cx (45b)

with the desired voltage values as the input u = u∗, position
as the output y = x. Defining the space vector

x =
[
x v Bx u

]T
(46)

where v = dx
dt is the speed of the shaft and Bx = Bmeas−x kxkB ,

leads to the system’s matrices

A =



0 1 0 0

kx

m
0

kB

m
0

0 0 − 1

Th

1

pwAδ

0 0 0 − 1

TVSC


(47a)

B =

[
0 0 0

VVSC

TVSC

]T

(47b)

C =
[
1 0 0 0

]
. (47c)

Observability and controllability of the system can be
proven with the Hautus lemmas

rank

(
λI −A

C

)
= 4 and (48a)

rank(λI −A,B) = 4 ∀ λ ∈ C (48b)

where λ are the Eigenvalues of A. The alternative state space
representation with the state Bmeas instead of Bx leads to
controllability problems when designing the reduced observer.

Robustness is a major concern for the designed control,
therefore integral state space control is designed with the
structure shown in Fig. 8.
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The additional state xI is added at the end of the space
vector. Consequently, the matrices need to be extended. Thus

xe =
[
x xI

]T
(49a)

Ae =

[
A 0
−C 0

]
(49b)

Be =
[
B 0

]T
(49c)

Ce =
[
C 0

]
(49d)

and
ẋe = Aexe + Beu+

[
0
1

]
r . (49e)

With
u = KIxI −K0x =

[
−K0 KI

]︸ ︷︷ ︸
−K

xe (50)

(49e) can be written as

ẋe = (Ae −BeK)xe +

[
0
1

]
r . (51)

Now, the poles can be placed for the extended system to get
the desired behaviour.

B. Reduced observer

For state space control all states must be known, meaning
that they need to be measured or observed. The state x is
measured and Bx calculated as stated. The other states are
found using a reduced observer. Therefore, the state vector is
rearranged

xo =

[
x1

x2

]
with x1 =

[
x
Bx

]
, x2 =

[
v
u

]
. (52a)

The resulting changes in the matrices’ arrangement lead to

ẋo =

[
ẋ1

ẋ2

]
=

[
A11 A12

A21 A22

] [
x1

x2

]
+

[
B1

B2

]
u∗ . (52b)

Bmeas is used as a second output thus y ∈ R2 with

y =

[
x

Bmeas

]
= Co

[
x
Bx

]
, Co =

[
1 0
kx
kB

1

]
(52c)

and
x1 = C−1

0 y . (52d)

From (52b) follows

ẋ2 = A21x1 + A22x2 + B2u
∗ (53a)

ȳ := A12x2 = ẋ1 −A11x1 −B1u
∗ (53b)

with the newly virtual output ȳ. For the estimated part x̂2 of
the space vector is described by

˙̂x2 = A21x1 + A22x̂2 + B2u
∗ + L(ȳ − ˆ̄y) (54a)

ˆ̄y := A12x̂2 (54b)

with the observer gain matrix L ∈ R2×2. Defining the observer
error as e2 := x2− x̂2, differentiating with respect to time and
substituting (53) and (54) lead to the observer dynamics

ė2 = ẋ2 − ˙̂x2 = (A22 −LA12)e2 . (55)

The poles of (A22−LA12) can be set analogously to the poles
of (Ae−BeK). The observer settles faster than the system, if
the poles are further left in the complex s-plane. The poles s1/2

with a three times larger real part lead to satisfying results.
Using (53b) and (54b) in (54a) leads to

˙̂x2 = (A21 −LA11)x1 + (A22 −LA12)x̂2

+ (B2 −LB1)u∗ + Lẋ1

(56)

and with newly defined x̄2 := x̂2 −Lx1 to the final observer
equations

˙̄x2 = [A21 −LA11 + (A22 −LA12)L]x1

+ (A22 −LA12)x̄2 + (B2 −LB1)u∗
(57a)

x̂2 = x̄2 + Lx1 . (57b)

C. Pole assignment

There are different techniques to place the poles of (51)
and by that define the behaviour of the closed loop system.
A straight forward approach is the pole assignment or pole
placement. Theoretically, the poles of (Ae − BeK) can be
placed arbitrarily by choosing K appropriate. Restrictions and
boundary conditions limit the poles’ positions. Two popular
placement variants will be discussed subsequently. For both
can be said, that a negative real part of about 350 1/rad results
in the maximum controller gain.

First, the poles are placed in a funnel on the left half of
the s-plane [11]. The over shoot amplitude and time can be
set by placing one dominant complex pole pair and the others
further left. The left most position is limited by the maximum
controller gain and the actuator dynamics, the imaginary part
by the desired damping. With a damping d = 0.4 and the
negative real part ω0d = 113 1/rad the dominant poles can be
calculated

s1/2 = −ω0d± j ω0

√
d2 − 1 . (58)

The poles s3/4 are placed further left (with 3ω0) and
s5 = Re{s3}. This configuration results in a very good com-
mand response and decent disturbance response as shown in
Fig. 9.

An alternative placement strategy is the Butterworth pat-
tern. It describes that n poles are paced on a semicircle in the
left complex s-plane with the radius r to the origin. The poles
can be found by solving(s

r

)2n

= (−1)n+1 . (59)

The Butterworth pattern is known to lead to an efficient
behaviour in regards to the control effort [12].

With higher n the real part of the poles decreases. This
leads to reduced dynamics and instability. Therefore, the poles
closest to the imaginary axis, calculated by (59), are moved
further left by doubling the real part. Fig. 9 shows, that
this adjusted Butterworth pattern leads to a good command
response but moderate disturbance response.



D. Optimal control

For optimal control the feedback matrix K is calculated in
a way, that the cost function

J(t) =

∫ t

0

[
xT(τ)Qx(τ) + uT(τ)Ru(τ)

]
d τ (60)

with
u(t) = −Kx(t) (61)

is minimized [13]. The optimal control is a compromise
between minimizing the states (left addend) and the control
signal (right addend). The positive definite matrices Q and R
weight the two summands.

Differentiating (60) and some substitutions (see [13] for
details) lead to the optimal controller gain matrix

K = R−1BTP (62)

where P is the solution of the algebraic Riccati equation

ATP + PA− PBR−1BTP + Q = 0 . (63)

The simulation results for the optimal control with the weight-
ing matrices

Q =


105 0 0 0 0
0 1 0 0 0
0 0 100 0 0
0 0 0 10 0
0 0 0 0 1013

 (64a)

R =
[
10
]

(64b)

are shown in Fig. 9. The coefficients represent the “impor-
tance” of the corresponding state when solving the cost func-
tion. As can be seen from (64), the highest importance is given
to the control error, followed by the position. When choosing
the factors, the different units of the states need to be taken into
account. The calculations are implemented with the position in
meters, so that this very small values need to be compensated
by high weighting factors. R considers the actuator, so higher
values lead to smaller control signals.

The settling time for the command and the disturbance
response is greater, but the actuator effort is reduced as Fig. 10
shows.

V. COMPARISON AND CONCLUSION

The simulation results for the introduced B-control with
symmetrical optimum, state space control with poles placed in
an funnel and optimal control are plotted in Fig. 11. The state
space control improves the overshoot of the command response
and the settling time after a disturbance step significantly but
with the observer and the state feedback for all five axis the
computation demand rises.

Comparing the controller output in Fig. 12 shows, that
the oscillation of the voltage can be reduced, especially by
using optimal control. This reduces the effective frequency
of the current and therefore leads to lower eddy currents.
Especially the performance of thrust bearings is influenced by
eddy currents [7], so that OC can be used for z-axis if stiffness
is not the highest concern.

Finally, some implementation hints should be mentioned:
The values of the gain matrices for the state space control
differ in orders of magnitude. When using 16 bit float numbers,
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the discretization of the vectors causes problems which can
be solved by using double precision values. The controller
performance is not significantly increased when reducing the
sampling time for the control loop, but with half the sampling
time the system becomes unstable.
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