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Abstract—Unbalance forces are a major source of undesired vi-
brations in rotating machinery. Active magnetic bearings (AMBs)
with special control algorithms, allow for controlling those forces
and counteract appropriately. The two basic principles are UFRC
and UFCC. They are known for many years and have been
published and patented before. There exist excellent publications
treating the closed-loop stability of UFRC but not much can be
found on the stability of UFCC.

This paper presents an adaptive multi-variable implementation
of UFCC, its theoretical background and a proof of control
stability. UFCC as described in this paper, has shown excellent
stability in practice and it can therefore be engaged over the
entire speed range of the machine. However in order to minimize
the load on power amplifiers and other components a switching
strategy is advised, where UFRC and UFCC are switched on and
off in the speed ranges where required. Guidelines for tuning
UFCC parameter are also given.

The effectiveness of UFCC has been proven in several appli-
cations and measurement results are given in this paper.

I. I NTRODUCTION

Active Magnetic Bearings (AMB) have some unique fea-
tures unknown in conventional bearing technologies: Active
control of the electromagnetic forces allows setting the bearing
properties by the control system. At some point the bearings
must provide high stiffness to minimize rotor orbit. But for
crossing critical speeds of the rotor, damping is required.
State of the art AMB systems feature digital control and the
bearing parameter can be adjusted over the entire speed range
according to the requirements of machine and process.

Unbalance forces are a major source of undesired vibrations
in rotating machinery. They can lead to large shaft orbits or
can saturate the power amplifiers. To overcome these problems
special control strategies have been developed during the last
decades, such as UFRC and UFCC [1].

Unbalance force rejection control (UFRC) removes syn-
chronous components from the AMB sensor signals, resulting
in force-free operation [2]. To achieve this, either a tracking
notch filter is inserted into the feedback loop or a synchronous
compensation signal is injected into the loop, matching ampli-
tude and phase of the unbalance disturbance [3]. The second
approach has several advantages with regards to stability and
robustness [4] and [5]. An new proof of stability and tuning
guidelines for this type of UFRC will be presented in a paper
at this conference [6].

When the shaft of a turbo machine is operated close to
or in a critical speed, the magnitude of shaft deflection may
become very large. Unbalance force counteracting control
(UFCC) aims at minimizing the synchronous displacement.
Typically a compensation signal is injected into the loop at

the output of the feedback controller. Amplitude and phase
of the compensation signal determine stiffness and damping
of UFCC. In [7] and [8] UFCC with signal injection at the
output of the feedback controller is used. Positive damping is
achieved by derivation of the sensor signal. [9] uses x-y cross-
coupling instead of derivatives to introduce damping. In [10] a
combination of UFRC and UFCC, balanced by so-called gain
controllers is introduced. Suitable choices of phase lead and
gain are discussed. [11] proposes a simultaneous compensation
of sensor runout and mass unbalance by using bias current
excitation. The authors propose Lyapunov based adaptation of
the unknown Fourier parameter.

UFRC and UFCC are often designated as ’filters’ although
this expression is oversimplifying. Other expressions for
UFCC are synchronous damping control (SDC) or optimum
damping control (ODC) [1].

All mentioned implementations of UFCC have in common,
that the closed-loop stability is affected. Unfortunately not all
mentioned publications include stability considerations. This
paper presents an implementation of a combined UFRC/UFCC
in Chapter II and a proof of stability in Chapter III. In Chapter
IV guidelines for the choice of parameter are given. The
stability and effectiveness of UFCC is shown by measurement
results in Chapter V.

II. W ORKING PRINCIPLE

The basic control scheme used in this paper is shown in
Figure 1. The feedback controllerK(s) ∈ Cpxp stabilizes the
control plantP(s) ∈ Cpxp. The influence of the unbalance is
modelled with inputfu(t). We define the error signale(t) =
y(t) − c(t) as the input toNf (s) which outputs two signals,
c(t) and fc(t). The compensation signalc(t) eliminates the
synchronous component fromy(t). The signalfc(t) is the
synchronous force to minimize shaft displacement. They are
defined as

c(t) =
[
sin(Ωt)I cos(Ωt)I

]
[
x̂1(t)

x̂2(t)

]

(1)

fc(t) =
[
sin(Ωt)I cos(Ωt)I

] [
Q
]
[
x̂1(t)

x̂2(t)

]

(2)

where I is the identity matrixIpxp and x̂1(t) and x̂2(t)
∈ Rpx1 are the states ofNf (s) corresponding to the ampli-
tudes of sine and cosine. The amplitudes are computed by the
demodulatorDM as described in [5].



The feed-forward matrixQ ∈ R2px2p determines gain and
phase offc with regards toc. Since it is a full matrix any
linear combinations of the elements ofx̂1(t) and x̂2(t) can
be formed and thusfc can have arbitrary phase lead. More
details are given in Chapter IV.

III. STABILITY PROOF

To investigate the stability of UFCC the same approach as
[6] uses for UFRC is applied here.Nf (s) is described as an
observer for the stateŝx1(t) and x̂2(t) with the following
state space equations

[
ˆ̇x1(t)
ˆ̇x2(t)

]

=

[
0 −ΩI

ΩI 0

][
x̂1(t)

x̂2(t)

]

+

[
TR(Ω)

TJ (Ω)

]

e(t)

[
c(t)

fc(t)

]

=

[
I 0

Q 0

][
x̂1(t)

x̂2(t)

] (3)

Applying the same modal transformation as in [6] to (3)
yields the modal state space description with new statesm1

andm2

[
ṁ1(t)

ṁ2(t)

]

=

[
jΩI 0

0 −jΩI

][
m1(t)

m2(t)

]

+

[
T(Ω)

T(Ω)

]

e(t)

[
c(t)

fc(t)

]

=
1
2

[
I I

Q Q

][
m1(t)

m2(t)

] (4)

where T(Ω) = TR(Ω) + jTJ (Ω) and T(Ω) = TR(Ω) −
jTJ (Ω) are the observer gains.

When both loops fromc and fc are closed the following
two equations hold:

e(s) = −Se(s)c(s) = −(I − Le(s))
−1c(s)

e(s) = −Fu(s)fc(s) = −P(s)(I − Lf (s))−1fc(s)
(5)
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Figure 1. Block diagram of the control system with UFRC and UFCC.

whereSe(s) is the sensitivity function at loop-breaking point
e andFu(s) is the dynamic compliance function.Le(s) and
Lf (s) are the loop gains at loop-breaking pointe and f
respectively. The corresponding state-space descriptions are

ẋs(t) = Asxs(t) + Bsc(t)

e(t) = −Csxs(t) − Dsc(t)

ẋf (t) = Afxf (t) + Bffc(t)

e(t) = −Cfxf (t) − Dffc(t)

(6)

The negative signs in (5) have been included in the output
equations. Closing both outer loops yields the closed-loop
system matrix

A(Ω) =









jΩI 0 0 0

0 −jΩI 0 0
1
2Bs

1
2Bs As 0

1
2BfQ 1

2BfQ 0 Af









︸ ︷︷ ︸
A0(Ω)

+









− 1
2T(Ω)D′ − 1

2T(Ω)D′ −T(Ω)Cs −T(Ω)Cf

− 1
2T(Ω)D′ − 1

2T(Ω)D′ −T(Ω)Cs −T(Ω)Cf

0 0 0 0

0 0 0 0









︸ ︷︷ ︸
δA(Ω)

(7)

with D′ = (Ds + DfQ) andA0(Ω) is the open-loop system
matrix with multiple eigenvalues±jΩ and the eigenvalues of
Se andFu. Similar to [6] the sensitivity of these eigenvalues
δΛ(Ω) of A(Ω), with respect toδA(Ω) can be expressed by
the right and left eigenvectorU0 andVT

0 of A0(Ω)

δΛ(Ω) = eig
(
(VT

0 U0)
−1VT

0 δAU0

)
(8)

It can easily be shown that the followingU0 and VT
0 are

eigenvectors ofA0(Ω)

U0 =









I

0
1
2 (jΩI − As)

−1 Bs

1
2 (jΩI − Af )−1 BfQ









(9)

VT
0 =

[
I 0 0 0

]
(10)

VT
0 U0 = I. (11)

and with (8) one gets the solution

δΛ(Ω) = eig(−
1
2
T(Ω)(Ds + DfQ)

−
1
2
T(Ω)Cs(jΩI − As)

−1Bs

−
1
2
T(Ω)Cf (jΩI − Af )−1BfQ)

= −
1
2
eig (T(Ω)[Se(jΩ) + Fu(jΩ)Q]) .

(12)
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Figure 2. Exemplary Campbell diagram of a turbo machine.λi are the shaft
eigenfrequencies,ni are critical speeds of the shaft andnmcs is the maximum
continuous speed. The colored areas indicate the speed ranges where UFRC
(green) or UFCC (red) are switched on. Patterna is the standard switching
pattern,b is a more aggressive pattern.

Equation (12) delivers a solution for the closed-loop eigen-
values starting from the open loop eigenvalues±jΩ. If all
δΛ(Ω) are located in the left half plane then the closed loop is
stable. MatrixT(Ω) of observer gains is the parameter which
ensures closed-loop stability.

IV. T UNING GUIDELINES

Properly tuned UFCC can be used over the entire speed
range of the machine. However in order to minimize bear-
ing current and machine vibration UFCC (and UFRC) are
switched on and off depending on rotation speed. Figure
2 shows a Campbell diagram and two different switching
patterns for a supercritical shaft. Patterna is the standard
pattern: UFCC is switched on only in the vicinity of the
3rd critical speed (first bending). At all other rotation speeds
UFRC is engaged and the feedback controller must have
sufficient damping. UFCC provides additional damping only
for the 3rd critical speed. Alternatively UFRC can be switched
on above the the rigid body modes.

If rotor unbalance is large, leading to higher than allowed
shaft displacement, then the pattern may be altered: UFCC
is additionally switched on around the rigid body modes (1st

and 2nd critical speed) to decrease rotor orbits (patternb).
At nmcs the shaft is operated close to its 4th critical speed
(second bending) where rotor unbalance can also lead to high
displacement. If the rotor cannot be balanced then additional
damping may be provided by UFCC to counteract. However
the effectiveness of UFCC at such high rotation speeds is
limited by the bandwidth of the magnetic bearing system.

Based on (12) a straight-forward choice forT(Ω) is

T(Ω) = 2σ[Se(jΩ) + Fu(jΩ)Q]−1 (13)

The sensitivitySe(jΩ) and the complianceFu(jΩ) are
computed by using a model ofP(s) according to (5) or

can easily be measured on the real system. The (small)
number σ ∈ R defines the convergence speed of UFCC.
The higherσ the faster UFCC adapts to a change infu(t)
which is equivalent to saying, UFCC has high bandwidth.
SinceT(Ω) is not constant and must be loaded e.g. from a
look-up table for each speed, alsoσ can be speed dependent
(see: [6]). In generalσ must be chosen individually for each
application: fast accelerating machines and or flexible shafts
typically require largerσ. On the other hand very largeσ may
deteriorate the robustness of the control loop.

In a machine with asynchronous electric motor, the
unbalance magnetic pull modulates unbalance forces with
the frequency of electrical slip. In this caseσ should be
chosen such that the bandwidth of UFCC lies above the slip
frequency to compensate for this effect.

The gain and phase offc with regards toc is determined
by matrix Q. In complex notationQ can be expressed as
Q′ =|Q′| ejϕQ ∈ Cpxp. If ϕQ is set to 0 thenfc is in
paraphase to displacementy and corresponds to a stiffness
force. If ϕQ is set to−π/2, then fc leadsy by π/2 and
is a positive damping (note the negative sign offc in Figure 1).

An intuitive choice for the magnitude of block diagonal
elementsQ′

ii is

| Q′
ii| =

fmax,i

δTDB,i

[
N

m

]

(14)

where fmax,i is the maximum force of the radial magnetic
bearingi and δTDB,i is the touchdown bearing single-sided
clearance. Practical experience shows that the gain may be set
slightly higher than this. A good start value is (for all bearing
planes the same):

| Q′
ii| = 1.4

fmax,i

δTDB,i

[
N

m

]

(15)

All off-diagonal elements are set to 0. Note that ifQ is set
to 0 then (1) corresponds to the UFRC scheme as in [6].

The gain ofQ relates to another issue, which must be taken
into account. High gain, combined with high rotor unbalance
lead to high forcesfc. It must be avoided thatfc saturates
the force capacity of the bearings and thereforefc must be
saturated to a predefined value well below the bearing force
capacity.

V. EXPERIMENTAL RESULTS

The presented UFCC control has been successfully de-
ployed into several AMB projects of the author’s company.
In no cases stability problems occurred, also not at very high
rotation speeds.

The example given is measurement data from a turbo
compressor with four radial bearings and one thrust active
magnetic bearing and therefore, an AMB system with nine
actively controlled axes. The total rotor length and mass of
the machine is approximately 5.5 m and 3 tons. The maximum
continuous speed is 166 rps (10000 rpm) and at this speed the
machine runs above the 4th critical speed.
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Figure 3. Measured unbalance response of turbo compressor: Only feedback
controller up to 90 rps, above UFRC is switched on.

20 40 60 80 100 120
0

20

40

60

80

100

 [rps]

di
sp

la
ce

m
en

t m
ag

ni
tu

de
 [μm

]

 

 

plane A
plane B
plane C
plane D

Ω

Figure 4. Measured unbalance response of turbo compressor: UFCC is
switched on between 10 and 90 rps, above this UFRC is switched on.

In this test the rotor was first accelerated from 0 tonmcs

with UFCC switched off and only the feedback controller
active. The magnitude of the displacement (0-peak) in each
of the four radial bearings was recorded. Then the same mea-
surement was repeated but with UFCC switched on between
10 and 90 rps. This means that UFCC is engaged not only at
the 3rd and 4th critical speeds but already well below the rigid
body modes. The parameter used are summarized in Table I.
The sensitivity functionSe(jΩ) and the compliance function
Fu(jΩ) required to computeT(Ω) have been measured by a
multi-variable sine sweep method.

The measured unbalance responses of the turbo compressor
are shown in Figure 3 and in Figure 4. Without UFCC and only
the feedback controller engaged, the shaft displacements reach
a maximum value of 80μm. When UFCC is switched on, the
displacements stay well below 20μm. The effect of UFCC is
obvious: Especially the critical speeds responses almost vanish
due to the damping provided by UFCC.

VI. CONCLUSIONS

A new stability proof for adaptive unbalance force rejection
control with signal injection has been presented. A simple
equation for the computation of observer gainT(Ω) was
derived, which is the key for stable operation of UFCC.
Guidelines for the choice of UFCC have been given as well.

Table I
UFFC PARAMETER FOR TURBO COMPRESSOR

Parameter Value Unit

σ 0.15 s

| Q’ii| 1.4 fmax,i/δTDB,i = 100 N/μm

ϕQi -π/2 rad

speed 10...90 rps

This may help the control engineer during commissioning and
parameter tuning. Stability and effectiveness of UFCC have
been demonstrated with measurement data from a large turbo
compressor.

The feed-forward gainQ has so far been parameterized as
block diagonal matrix with no couplings between the bearing
planes. SinceSe(jΩ) andFu(jΩ) are in general fully coupled
it should be investigated if and how additional elements inQ
could further improve the performance of UFCC.
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