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Abstract—Recently, there has been increased research interest
in developing higher power bearingless motors. To reach sig-
nificant power levels, rigorous design optimization is needed.
This paper investigates the electromagnetic design space for a
30k r/min, 50kW bearingless permanent magnet motor. The
differential evolution optimization algorithm is used to optimize
two different design topologies for various objective functions.
Detailed modeling considerations are presented to calculate the
key performance metrics which are unique to bearingless motor
designs (i.e., average and ripple suspension forces) in a computa-
tionally efficient manner. The resulting optimal design geometry is
compared to demonstrate the wide design space of this machine.
Finally, a weighted multi-objective function is proposed based on
efficiency, force and torque ripple, and power density.

NOMENCLATURE

AL Linear current density (kA/m)
Bg No load air gap field (Tesla)
Dos Outer stator diameter (mm)
Dor Outer rotor diameter (mm)
Ea Force angle error (degrees)
Em Force amplitude error normalized by desired

force magnitude
FRW Force per unit of rotor weight
Lg Airgap length (mm)
Lst Stack length (mm)
Om Objective function variable m
Pa Penalty function
Pc Core loss (W)
PR Pole arc ratio
Q Number of stator slots
SR Slot ratio
S1 Shoe height 1 (mm)
S2 Shoe height 2 (mm)
Tm Permanent magnet thickness (mm)
Tr Torque ripple normalized by average torque
TRV Torque per unit of rotor volume
Ts Stator yoke thickness (mm)
Wt Tooth width (mm)
wm Weighting factor for objective function vari-

able m
η Machine efficiency

I. INTRODUCTION

Active magnetic bearings have been commercialized to
provide a non-contact solution for supporting motor shafts.

Compared to contact-type bearings, this has advantages in
extreme reliability, lifetime, and efficiency. However, achiev-
able magnetic force densities are low compared to contact-
type bearings, yielding bulky machine designs which have
been particularly problematic at high speeds. Alternatively,
bearingless motors create magnetic bearing forces in the airgap
of an electric motor by modifying the motor’s magnetic field.
This allows for the elimination of one or more magnetic
actuators, potentially solving the aforementioned problem [1].

Bearingless motors have so-far been developed for special-
ized applications, such as artificial hearts, hygienic pumps, and
hygienic mixing devices, where the contact free and integrated
operation has been of greater importance than achieving sig-
nificant power and efficiency levels [2]–[4]. Recently, several
initiatives have looked at developing bearingless motors for
industrial compressor applications where significant power,
efficiency, and speed are needed (i.e., > 30 kW, > 95%,
and > 20 k r/min), for example: [5]–[8]. Satisfying the
contradictory requirements of magnetic suspension and motor
performance at this speed range has proven quite challenging.
Investigations have so far focused on exploring design topolo-
gies and suggesting metrics to assess a bearingless design.
The trend has been to explore the design space by fixing all
design variables except for a single variable of interest, which
is then varied over a range of permissible values to gain insight
into how that variable impacts the design metrics and whether
the design topology can be made viable. Particularly, in [6],
[7], interesting design knowledge has been developed into
workable rotor topologies that yield promising torque/force
density and ripple performance.

This paper takes the advancements of [6], [7] and re-frames
the problem as a multi-objective design optimization problem.
In this study, the differential evaluation (DE) optimization
technique is used to search the design space by leveraging
2D finite element analysis (FEA) to consider coupling and
saturation effects. This investigation explores the suitability of
various objective functions to evaluate bearingless permenant
magnet synchronous motor (BPMSM) designs based on the
following key performance parameters: torque density, force
density, torque ripple, force angle and amplitude error, and
machine efficiency. The various objective functions are shown
to yield substantially different design geometry, with trade-offs
in the magnetic suspension and motor performance. Two rotor
geometries are considered that are similar to what is described
in [7]: a “pure” surface mount topology and an inset topology



where iron teeth are located between the magnets.

The core contribution of this paper is to use the differential
evolution optimization algorithm to explore the design space
of the BPMSM for industrial compressor applications. Differ-
ences between conventional PM motor design are identified as
well trends in design variables that are unique to bearingless
motors.

II. MOTOR MODEL

Details of the motor topology considered in this investi-
gation are now described, including the motor topology and
parameters used to define the geometry.

A. Motor and Winding Topology

The bearingless motor topology optimized in this paper is
a surface mount permanent magnet motor with four rotor poles
(p = 2) and 6 stator slots (Q = 6). The stator is wound as a
fractional-slot concentrated winding. In addition to producing
torque, the winding is configured to produce a suspension field
of 2 poles (ps = 1). The design of this bearingless motor
topology has also been considered in [7].

The stator winding can be realized as two separate wind-
ings (a torque and a suspension winding) or as a single
combined winding (where the same coils produce both torque
and suspension forces) [9], [10]. In [10], it is shown that
this winding can be implemented as a DPNV-type combined
winding (parallel combined winding) with the same winding
factors as it would have if implemented as a separated winding.
The combined winding approach is advantageous from a
motor performance perspective because it allows the drive to
dynamically allocate slot current between creating suspension
forces and creating torque. The drive connection and operation
for DPNV windings is described in [11]. Since the combined
winding and separated winding approaches produce the same
slot current for this bearingless motor, the design modeling
does not need to distinguish between the two approaches.
Rather, in this paper, the total slot current is set according
to the amount of torque and suspension force that must be
produced.

B. Model parameters

To enable exploring several different optimization functions
in a meaningful and insightful manner, the design space is
highly constrained with relatively few independent variables
(8 variables are optimized, as opposed to the 17 variables
identified in [12]) which are now described. This investigation
considers two rotor structures for the BPMSM: a standard
SPMSM rotor (rotor type 1) and an inset magnet rotor (rotor
type 2). The radial cross-section of the motor for either rotor
structure is described by the same 10 independent variables.
Fig. 1 and Fig. 2 depict the definition of these variables for
each rotor structure. This paper treats θt and θs as a single
independent variable defined in (1), where θs = 60◦ (due to
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Fig. 1. BPMSM geometry with rotor type 1 (type R1).
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Fig. 2. BPMSM geometry with rotor type 2 (type R2).

the design having 6 slots). Similarly, θm and θp are a single
variable defined in (2).

SR =
θt
θs

(1)

PR =
θm
θp

(2)

Of these 10 variables, 8 are determined by the optimization
algorithm (listed in Table I along with their allowable range),
while the remaining two variables (Dor and Dos) are held
constant as described below. Note that the parameters SR, PR,
S1, and S2 are defined to allow the optimization algorithm to
tune the airgap field harmonic content, which has a significant
impact on the suspension force performance.

A maximum rotor tip speed of 150 m/s is assumed at
the surface of the permanent magnets and a 3mm thick
nonconductive sleeve is used to retain the permanent magnets
on the rotor. This tip speed and sleeve thickness are typical
values that can be expected for a high performance SPMSM
motor design [7], [13]–[15]. For the rated rotational speed



TABLE I. GEOMETRIC CONSTRAINTS

Symbol Min. value Max. value Initial value

Lg 3.3 9 6

Tm 1.5 8 4

Wt 20 40 35

Ts 15 35 20

S1 3 10 5

S2 3 10 5

SR 0.5 0.9 0.7

PR 0.5 0.9 0.7

TABLE II. DESIGN INFORMATION

Permanent magnet N40H

Laminations Arnon5

Lamination Stacking Factor 0.91

Magnet wire Copper

Sleeve 3mm Carbon fiber

Conductor Current Density 3.7Arms/mm2

Slot packing factor 0.45

Rated Power 50 kW

Rated Speed 30,000 r/min

of 30,000 r/min, this corresponds to a rotor diameter of
Dor = 95.5mm. In addition to this, the stator outer diameter
is fixed at Dos = 250mm to restrict the design space size, and
facilitate intuitive comparisons between designs.

Additional model parameters and design ratings are sum-
marized in Table II.

III. DESIGN PERFORMANCE CALCULATIONS

Techniques and assumptions used to model and calculate
the performance metrics of the BPMSM are now described.
Emphasis is placed on considerations that are unique to a
bearingless motor design (i.e., effects related to the magnetic
suspension field). A 2D static finite element analysis (FEA)
package (FEMM [16]) calculates the machine’s magnetic field,
which is then used to make loss and force calculations.
Simplifying assumptions are employed whenever reasonable
to enable computationally efficient performance calculations.

A. Losses

Iron, copper, and air friction loss calculations are needed to
evaluate the efficiency of each BPMSM design. Note that this
list of loss components differs from that of a conventional mo-
tor design in that no bearing losses are present in bearingless
motors.

Since a population based optimization method is used
(differential evolution), thousands of designs will be evaluated
throughout the optimization process. To achieve a reasonable
design time, computationally efficient loss calculations are nec-
essary. This section describes the loss calculation assumptions
and methodology.
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Fig. 3. Lamination core losses as a function of excitation and frequency.

1) Copper Loss: Coil loss is calculated as the ohmic loss
caused by the slot current density over the slot area. This is
calculated from (3), where N is the number of turns within a
slot, Lc is an estimate of the total coil length, I is the coil
current, and Ac is the cross-sectional area of a conductor.
The calculations assume AC effects to be negligible (i.e., thin,
transposed conductors).

Pcu = ρcu
Lc

Ac
I2NQ (3)

2) Permanent Magnet Loss: Magnet eddy current losses
are calculated following the procedure outlined in [17] and
using a Matlab function provided with FEMM [16].

3) Iron Loss: To calculate iron losses (stator and rotor
laminations), loss data for the lamination material has been
extracted from the manufacture’s datasheet [18] and curve fit
to the well-known Steinmetz Equation (4), shown in Fig. 3.

Pc = ChωeB
2 + Ceω

2
eB

2 (4)

The following iron loss calculation procedure is followed:

1) field data for each mesh element located in the lami-
nation material is extracted from the FEA solver;

2) the harmonic components for the field in each element
are calculated;

3) the core loss per unit length of each harmonic com-
ponent in each element is calculated from (4);

4) the total core loss per unit length is calculated by
summing all of the core loss values (from step 3);

5) the result is multiplied by the stack length of the motor
to obtain the final core loss.

4) Air friction Loss: The approach to calculating air fric-
tion loss relies on pre-calculated air friction coefficients. These
coefficients can be obtained from experimental measurement
and are selected based on the well-known Reynolds and Taylor
numbers depending on the flow condition [19]–[22].

The air friction losses on the rotor’s radial surface are
calculated using the approach presented in [20] with the same
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Fig. 4. Air friction losses for a design with a fixed airgap length while speed
and stack length are varied.

loss coefficients, using (5). In this expression, Cfr is the radial
surface air loss coefficient, ρa is the temperature-dependent
density of air, and ω is the angular velocity of the rotor. The
air friction losses on the axial surface of the rotor are calculated
using the approach presented in [22] and are calculated as (6),
where Cfa is the axial surface air loss coefficient. For designs
with a large aspect ratio (large values of Dos/Lst), these end
surface losses become increasingly important.

Pwr = πCfrρaω
3

(
Dor

2
+ 0.003

)4

Lst (5)

Pwa =
1

2
Cfaρaω

3

(
Dor

2
+ 0.003

)5

(6)

With this investigation’s assumption of fixed rotor diameter
Dor, the key input variables to calculate windage losses are
the airgap length Lg and stack length Ls. Depending on the
objective function used for the design optimization, different
torque or force density values may be found, which will
require the stack length to scale in order to achieve the rated
design power. Longer stack lengths correspond to higher air
friction loss. Further, the temperature of the air is assumed to
vary linearly with the rotational speed from 20◦C to 120◦C.
Example windage loss calculations for a bearingless motor
design with a fixed airgap are shown as a function of stack
length and rotational speed in Fig. 4.

B. Force and torque calculations

Torque and force ripple values are important considera-
tions when evaluating a BPMSM design. Torque ripple Tr
contributes to the same undesirable performance that has
been thoroughly studied in traditional motor design – namely,
vibration and acoustic noise.

Force ripple is a unique consideration to bearingless motor
design. It can be viewed in terms of an amplitude error and
angle error [23]. That is, the instantaneous force vector that is
produced may differ from the desired force vector in terms of
both its amplitude and angle. The error amplitude and angle

will fluctuate over the course of one rotor revolution due to
space harmonics in the magnetizing field (slotting effect and
saturation) and due to harmonics in the winding MMF. Fig. 8
depicts these force error quantities for a desired force vector
in the x-direction at an instant of time. Large maximum error
angles can result in oscillations and instability in the levitation
control. It is suggested in [1], [6], [7], [24], that designs attempt
to minimize the maximum error angle that is observed over one
revolution to be within 5◦.

Since both torque and force ripple vary with rotor rotation,
multiple static solves are required at different rotor angles
in order to quantify the maximum ripple values. To investi-
gate the minimum number of rotor angles required, example
bearingless motor designs are solved at rotor angle increments
of 1 degree and harmonic components are calculated for the
force and torque waveforms. To allow for the possibility that
different BPMSM designs have different harmonic content, 70
designs of rotor type 1 were evaluated where the independent
design parameters were randomly selected within the ranges
listed in Table IV. Fig. 5 shows the harmonic components
of the torque waveform. Clearly, the lowest order harmonic
of significant interest is the 6th harmonic. This is a well-
known property of electric machines [25] and means that any
60◦ span of rotor angles can be used to determine the entire
torque waveform. Within that 60◦ span, torque is calculated
at 6 evenly spaced rotor angles (a sampling resolution of 10◦

is used), which is a common practice in motor design. The
peak-to-peak torque value is then calculated as the difference
between the maximum and minimum of these torque data
points and normalized by the average torque.

A similar process is repeated for analyzing the required
sampling frequency of the force waveform. Fig. 6 shows the
force harmonic components of the 70 random BPMSM designs
when suspension currents are injected at the synchronous
frequency (to create a constant magnitude and direction force).
The lowest harmonic component observed is the 2nd harmonic,
which means that a 180◦ span of rotor angles must be
evaluated. To determine the required sample resolution, the
maximum error angle calculated for different values is stud-
ied. Accurate calculations of the error angle are particularly
important because inaccuracies larger than 1◦ have significant
implications for whether a design is acceptable (whether it
meets the criteria that Ea ≤ 5◦).

The procedure to calculate the error angle is as follows
(Referring to Fig. 8):

1) the model is solved for the 180◦ span of rotor angles
with rated torque and suspension current;

2) at each point, the angle of the suspension force vector
is calculated;

3) for each design, the desired suspension force vector ~Fc
is calculated as the average of the vectors from step 2
(this decouples the effect of torque armature current
on the suspension forces);

4) the error angle is determined for each sample point by
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subtracting the sample point’s force vector angle from
the angle of ~Fc;

5) the maximum angle magnitude found in step 4 is the
maximum error angle Ea.

Maximum error angle values of the 70 random BPMSM
designs are calculated and compared against a design that is
sampled at 1◦ increments. The difference is treated as the
uncertainty of the error angle calculation for a given sampling
interval and is plotted in Fig. 7. A sampling interval of 10◦

is selected as having the maximum allowable uncertainty in
the error angle, and is used for force calculations. Note that
if only 6 equally spaced rotor angles (sample angle of 30◦

in Fig. 7) were used for error angle calculations (as is done
for torque calculations), the maximum uncertainty in the error
angle would be unacceptable large (≈ 7.5◦).
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Fig. 7. Uncertainty in the error angle value for different sample intervals
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Fig. 9. Design flowchart of BPMSM for an engineer.

IV. OPTIMIZATION

The typical FEA based machine design process flowchart is
shown in Fig. 9. The number of iterations can be reduced using
machine analytic equations or designer’s experience. However,
this is a challenging process as the performance variables
are typically in a trade-off relationship and the sensitivity of
each each performance variable to the design parameters is
difficult to anticipate. The flowchart in Fig. 10 shows multi-
objective FEA based optimization used in this paper. The
iterative process, including model generation and evaluation, is
fully automated. Multiple instances of FEA design evaluation
are called using the parallel computing toolbox in Matlab to
expedite the optimization process.

A. Differential evolution optimization algorithm

Differential evolution (DE), particle swarm (PSO), and
genetic algorithms (GA) are commonly used to optimize large,
non-convex design spaces, such as that found in electric
machine design. This paper uses the DE algorithm. A detailed
description of the algorithmn is provided in [26], an example
of its use in optimizing a PMSM is presented in [27], and an
example of its use for optimizing an active magnetic bearing
design is presented in [28].

This paper uses the DE algorithm to optimize the BPMSM
designs described in Section II. In the algorithm, a cross-over
ratio of 0.3 is selected to take into account the parameter
dependency and a weighting factor of F = 0.3 is used for
mutation (7), where v is an evolved design, and r1, r2, and
r3 are previously evaluated designs.

v = r1 + F(r2 − r3) (7)

B. Muti-Objective Function

To design a high performance bearingless motor, various
aspects of the design must be taken into account. The standard



Fig. 10. Multi-physics FEA based DE opt with boundary and pre-defined
assumptions.

multi-objective function (8) is utilized to accomplish this.

MO = Pa +

6∑
m=1

Omwm (8)

The same objective function is used for both BPMSM rotor
types (type 1 and 2 defined in Section II-B) to facilitate a
comparative analysis. Table III defines each of the objective
functions used in the optimization, in terms of performance
variables and weighting factors. The components of this func-
tion are now described in more detail.

1) Performance variables: The design performance vari-
ables are now described for evaluation of a BPMSM design.
In addition to the standard torque metrics, the BPMSM design
includes performance variables based on suspension force
capabilities. Torque and force density are captured in the TRV
and FRW performance variables (defined in the nomenclature
table and calculated for rated slot-current). These parameters
can be benchmarked against other known designs. For exam-
ple, TRV of typical high-performance servomotors is 15-50
kNm/m3 [29]. An FRW value of 1 indicates that rated slot
current conditions are able to support the rotor weight. Torque
and force ripple performance are captured by the variables
Tr, Ea, and Em with the calculation procedures described in
Section III-B, as shown in Table III. The final performance
variable is the motor efficiency, which is calculated from
the electric, magnetic, and windage losses as described in
Section III-A.

2) Scaling factor: Scaling factors appear as constant values
in the objective definitions of Table III. These constants are
used to normalize the objective based on what a “reasonable”
design optimization is expected achieve. For example, in O1

the value 1/TRV is scaled by 30 kNm/m3 so that O1 = 1

for a design with this TRV value. This normalization is done
so that the weighting factors can be interpreted as setting the
relative importance of each objective.

3) Weighting factor: The weighting factor is multiplied
with objective variables and summed to evaluate the multi-
objective function as shown in (8). Each weighting factor is
chosen as the importance of the objective.

4) Penalty: A design that does not satisfy the geometric
constraints described in Table I is discarded by adding a large
penalty Pa to (8).

C. Machine Excitation

Magnet materials and the coil current density are provided
in Table II. In the optimization process, each machine is
evaluated under rated current conditions, where 97.5% of the
slot current density is allocated to torque producing current
and 2.5% to suspension force producing current.

D. Evaluation Procedure

Referring to the discussion in Section III, FEMM is used
to evaluate the fields of the machine under rated current
conditions in 10 degree increments of rotor rotation, over
a span of 180◦. The field data is used to calculate force,
torque, and efficiency performance variables as per length
quantities. The length of the machine is then determined so
that the machine produces the rated torque (calculated from
the rated power and speed provided in Table II) and the final
performance variables are calculated using this length.

V. OPTIMIZATION RESULTS

The design space of the BPMSM is investigated with four
sets of objective functions (see Table III) and two rotor types
(see Fig. 1 and Fig. 2). Results of the first two optimization
functions (T and TF1 in Table III) highlight the difference
between conventional PM motor design and BPMSM design.
Results from the next two optimization functions (TF2 and
TFE) are used to explore trends in design variables that are
unique to bearingless motors. The only differences between
each of the optimization runs are in the weighting factors (as
defined in Table III). These changes are found to yield to
very different designs, which can be clearly seen Fig. 11. The
optimized geometric parameters for each objective function
are shown in Table IV and the corresponding performance
variables are shown in Table V. Detailed analysis of the results
of each optimization run are now presented.

A. Torque optimization

1) T: The first optimization function optimizes only the
torque generation capability, without regard to the suspension
force requirements. In this case, the optimization framework
places emphasis on tuning the stator tooth dimensions to
maximize the torque producing airgap flux density and min-
imize harmonics that lead to torque ripple. In comparing
rotor designs R1 and R2, it can immediately be seen that R2



(a) T (b) TF1 (top), TF2 (bottom) (c) TFE

Fig. 11. BPMSM cross-section results for each of the optimization functions defined in Table III. The left side of each figure corresponds to rotor type R1
and the right side to rotor type R2.

TABLE III. OBJECTIVE FUNCTION DEFINITIONS

Optimization functions explored

Objectives Weight Ta TF1b TF2c TFEd

O1 30e3/TRV w1 1 1 1 1

O2 1/FRW w2 0 1 1 1

O3 Tr/0.05 w3 1 1 0.1 0.1

O4 Ea w4 0 1 0.1 0.1

O5 Em/0.05 w5 0 1 0.1 0.1

O6 1/η2 w6 0 0 0 10
aT: Torque optimization

bTF1: Torque-force optimization
cTF2: Torque-force optimization case 2

dTFE: Torque-force-efficiency optimization

TABLE IV. OPTIMAL GEOMETRIC PARAMETERS FOR EACH
OBJECTIVE FUNCTION

Ta TF1 TF2 TFE

R1b R2c R1 R2 R1 R2 R1 R2

Lg 8.75 8.59 4.35 6.88 3.42 4.30 3.47 4.11

Tm 7.87 5.84 2.08 1.53 2.37 2.12 2.29 1.98

Wt 24.1 20.0 27.2 25.4 30.4 33.0 30.0 33.8

Ts 17.3 18.6 21.5 21.0 16.8 18.7 16.8 20.2

S1 7.87 6.35 4.69 8.63 9.21 4.75 7.21 5.34

S2 7.53 4.37 6.56 9.24 3.65 4.69 3.87 3.47

SR 0.77 0.63 0.60 0.69 0.54 0.68 0.51 0.74

PR 0.87 0.89 0.85 0.83 0.86 0.87 0.78 0.80

Lst 37.0 41.9 66.5 112.8 48.1 60.4 54.2 66.92

aOptimization functions defined in Table III
bR1: Rotor type 1
cR2: Rotor type 2

converges to thinner magnets Tm. This appears to be needed
to reduce the torque ripple caused by the iron rotor teeth
increasing the THD of the airgap field. The ratio of O1w1

and O3w3 also imply the torque ripple components are easier
term to be minimized than TRV . Torque ripple is a function
of the harmonics of the airgap flux density which can be
manipulated via several variables (SR, PR, S1, S2, T, Lg),
whereas in this highly constrained design framework, TRV
depends almost exclusively on the fundamental component of
airgap flux density, controlled by only Tm and Lg .

TABLE V. OPTIMIZED PERFORMANCE METRICS

Ta TF1 TF2 TFE

R1 R2 R1 R2 R1 R2 R1 R2

O1w1 0.45 0.51 0.79 1.37 0.59 0.74 0.63 0.78

O2w2 0 0 1.29 2.02 0.94 0.96 0.96 0.87

O3w3 0.11 0.10 1.32 0.75 0.15 0.17 0.27 0.21

O4w4 0 0 0.96 2.12 0.15 0.46 0.01 0.45

O5w5 0 0 0.42 0.80 0.07 0.20 0.03 0.18

O6w6 0 0 0 0 0 0 10.9 11.2

TRV 67 59 38 22 51 41 47 38

FRW 0.2 0.3 0.8 0.5 1.1 1.0 1.0 1.1

Tr
b 0.5 0.5 6.6 3.7 7.4 8.5 13 10

Ea
c 21 21 1.0 2.1 1.5 4.6 1.1 9.1

Eb
m 39 44 2.1 4.0 3.5 10.0 1.7 4.5

ηb − − − − − − 95.6 94.6

Cd 0.6 0.6 4.8 7.1 1.9 2.5 12.9 13.7

Bg 0.6 0.5 0.5 0.4 0.6 0.6 0.6 0.6

AL 93 101 93 84 108 93 109 89

aOptimization functions defined in Table III
bin %

cin degrees
dFinal cost

B. Torque Force Optimization

1) TF1: Next, torque and force optimization is done for
BPMSM design investigation. By having evenly distributed
weights of wm = 1, parameter sensitivity and trade-offs
can be investigated and compared to the torque optimization
case. Pareto plots are drawn to find the relationship between
performance variables, with trade-offs identified and analyzed
using the pareto fronts in Fig. 12. In Fig. 12(a), a linear
relationship between the force angle error and amplitude
error can be identified–which means that design changes to
improve Ea are likely to also improve Em. In Fig. 12(b)-12(d)
independent relationships between performance variables are
observed, which shows that Tr and force error terms, torque
density and ripple terms, and force density and force error
terms can all be independently optimized. Further, note the
distribution of designs in Fig.12(d). This distribution indicates
either that FRW is more sensitive compared to Ea or that Ea
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Fig. 12. Pareto plots of performance parameters for TF1 optimization function
with rotor type R1.

is relatively easier optimized than FRW (a similar conclusion
was drawn for torque and torque ripple in Section V-A).

Input geometric parameter sensitivity on force generation is
also investigated shown in Fig.13. In Fig. 13(a), larger FRW
values (better designs) are shown to be obtained for shorter
equivalent airgap length values (reduced Lg and Tm), which
makes intuitive sense as this reduces the reluctance seen by
the armature winding. Interestingly, to minimize force angle
error, open slots with low SR values appear to be preferred in
Fig. 13(b) (which is the opposite trend observed for minimizing
force ripple).

2) TF2: Next, the TF2 weighting factors are chosen to
achieve a more compact design (higher torque and force den-
sity). The resulting BPMSM geometry is shown in Fig.11(b)
and in Table V and Table IV. This optimization results in
shorter airgap lengths and thicker magnets, which increases
the air gap field (and therefore TRW ). Notice that the stator
design converged to open slots with low SR values to avoid
increasing force error caused by regional saturation of the tooth
tip.

The results of TF2 and TF1 are compared in Fig. 14,
where several interesting trends can be observed between the
two optimization functions as well as between the two rotor
structures. The TF2 optimization function clearly worsens
ripple components but achieves the best TRV and FRW
values. For both algorithms, rotor type R1 performs better
in terms of suspension force performance (ripple and force
density) and torque density. Further, when comparing the cost
(bottom of Fig. 14), rotor type R2 is seen to be generally
inferior to type R1. It is therefore concluded that rotor type
R1 is superior to rotor type R2 for BPMSM designs.
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Fig. 13. TF1 optimization rotor type 1 input parameter sensitivity on force
generation.

C. Efficiency optimization

1) TFE: The fourth objective function uses loss calcula-
tions and heavily weights the designs’ efficiency. The opti-
mized BPMSM geometry is shown in Fig. 11(c) and again
is summarized in Tables V and IV. The emphasis on loss
reduction clearly causes the optimization algorithm to reduce
the magnet thickness Tm and span PR. Fig. 15(a) shows the
loss breakdown of the resulting BPMSM design (rotor type
R1) with respect to rotational speed. Notice that the magnet
loss is high. Consider the PM has a much smaller volume
than the stator, the PM loss has the highest loss density. This
is anticipated to cause thermal problems for magnets and will
need to be addressed via forced cooling design or mitigated
through a more advanced design process that considers the
rotor temperature. Addressing magnet thermal challenges is a
problem that is common to all high speed SPMSM designs.
The efficiency at 30,000 r/min of rotor type 1 is about 96%.

Next, from Fig. 15(b), it can be seen that TRV and
efficiency are in a trade-off relationship. The biggest loss
components are stator iron loss and magnet loss. When this
material is pushed to the limits high TRV is achieved with
higher loss. Lower TRV will result in high VR but lower
loss. Note that FRW is independent of TRW and efficiency.
Effective airgap length has the most relationship with FRW
as shown in Fig.13(a)

Note when reviewing the performance variables for every
iteration, it was observed that for certain designs, the efficiency
is greater than 96% and TRV values of up to 60 are observed.
However, the best design was selected via the multi-objective
function which balanced all competing performance variables.
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iterations that the algorithm is run.

VI. CONCLUSION

This paper has developed and presented a multi-objective
optimization framework for a bearingless permanent magnet
motor design. The framework is based around the differential
evolution algorithm and is shown to be able to automate the
entire design process. Design performance variables have been
proposed, with emphasis placed on defining and investigating
metrics unique to bearingless motors. Whenever possible, com-
putationally efficient design evaluation processes have been
developed in order to expedite the optimization process.

The optimal design space of the bearingless motor is ex-
plored for two rotor structures with surface mounted magnets.
This investigation has been conducted by defining several
multi-objective optimization functions that allow design trends
to be identified and analyzed. Finally, a balanced multi-
objective optimization function is used to demonstrate that
a design efficiency of nearly 96% is possible while still
satisfying stringent torque and suspension force performance
requirements. Future work must focus on considering mechan-
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Fig. 15. Results for final TFE optimized design.

ical (structural and thermal) aspects of the design in order to
develop a practical motor design.
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