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Abstract—As industrial machine performance requirements 

progress, accurate high frequency fluid-film bearing coefficients 

are necessary in order to ensure accurate prediction of system 

level machine rotordynamics. Traditional fluid-film bearing test 

rigs have been shown to enable accurate dynamic bearing 

coefficient identification. However, the uncertainty of these 

coefficients significantly increase at higher frequencies (>250 Hz). 

Therefore, as modern high performance machinery require high 

accuracy high frequency dynamic coefficient validation, a new 

bearing test rig design is required. This work solves this problem 

through the development of a new test rig based on the 

development of an “Active Load Cell”. The theoretical 

development, test rig design and detailed simulation results are 

presented to demonstrate the dynamic force measurement 

performance capabilities of an Active Load Cell over a broad 

frequency range. 

INTRODUCTION 

In many industrial machines - such as gas turbines, steam 

turbines and compressors - fluid-film bearings are used to 

support the rotating shafts. System-level performance 

requirements are trending toward higher rotating speeds and 

higher load conditions. Accurate knowledge of fluid-film 

bearing stiffness and damping coefficients are critical to the 

accurate prediction of the dynamic behavior of these 

machines. Fluid-film bearing coefficients are modeled with 

bearing codes such as state-of-the-art 

thermoelastohydrodynamic (TEHD) codes [1] and included 

in rotordynamic analyses. 

Modeling bearings accurately is a challenging task and 

Kocur et al. found in an API-sponsored survey that 

predictions of stiffness and damping coefficients varied by 

almost an order of magnitude [2]. The survey requested the 

coefficients for a bearing design which was sent to engineers 

and researchers working with fluid-film bearings. Steps were 

taken to isolate differences in bearing models as the cause of 

variation by providing a common rotor model and damped 

eigenvalue solution algorithm. This resulted in variations of 

predicted damped eigenvalues being attributed to variations 

in predicted coefficients. Ultimately, one of the conclusions 

from the Kocur et al. survey is that “a gold standard of 

experimental data is needed” to validate component 

coefficient predictions. With more reliable data, bearing 

models can be validated and variation in predictions can be 

reduced. 

Previous test rigs have been developed for the purpose of 

experimentally identifying these bearing dynamic coefficients 

[3]. The literature review suggests that uncertainty in the 

experimentally identified coefficients is not typically 

addressed. When a measure of uncertainty is presented, it’s 

often an analysis of repeatability or a measure of curve fit 

quality. Repeatability analysis is insufficient to understand 

the uncertainty in identified coefficients because it is an 

analysis of random errors and in principle, random errors can 

be minimized by taking more samples. Systematic errors, 

however lead to unavoidable error in identified coefficients. 

The addition of quality of curve fit is not sufficient to analyze 

the effects of systematic error on the experiment. Simply 

stated, comprehensive analysis of the effect of systematic 

errors on coefficient identification is uncommon. 

To address this, Schwartz et al. [4] extended a method 

developed by Kostrzewsky et al. [5] to model experimental 

coefficient uncertainty due to systematic errors over a range 

of test frequencies for a system operating at a constant speed. 

The analysis was based on the typical identification 

experiment where force measurements applied to the system 

and relative displacement measurements between rotor and 

stator are used to identify coefficients. Using a single-axis 

representation as an initial simplified model, analytical 

equations for coefficient identification errors were developed 

that established trends in uncertainty and showed that the 

inertial component causes uncertainty to increase 

quadratically as a function of excitation frequency. This 

behavior can increase uncertainty rapidly beyond useful 

bounds for higher-frequency excitations. In addition, the 

analysis showed that attempting to compensate for the inertia 

of the excited component in the experiment could actually 

increase uncertainty due to the additional acceleration 

measurement error. 

Current methods of force identification are indirect and 

subject to measurement errors that compound at higher 

frequencies to create significant uncertainties in the identified 

values. The “Active Load Cell” is a new experimental 

method of determining fluid-film bearing forces without the 

need for inertial correction [11]. An adaptive control 

algorithm [6, 7, 8] works in conjunction with accelerometer 

readings and an electrodynamic shaker to adaptively cancel 

the motion of the bearing housing. This measurement method 

has the potential to determine bearing forces directly, and to a 

higher degree of accuracy than previous force identification 

methods. This research details the development and 

simulation of an Active Load Cell (ALC) Test Rig, which 

will be used to validate this concept. The simulation results 



documented in this paper suggest that bearing force 

amplitude and phase can be determined within 1% of true 

values across a wide range of test frequencies, bearing 

stiffness, and dynamic loading conditions. Determining 

bearing force within 1% of the true value can in turn lead to 

significant improvements in bearing dynamic coefficient 

identification uncertainty. 

 
Figure 1. Single mass system with external applied force 

 

THEORETICAL DEVELOPMENT 

Test rigs for determining bearing coefficients typically 

utilize a measurement of the force applied to the excited 

component and the relative displacement between the excited 

and rigidly held component. Schwartz et al. developed a 

single axis, single degree-of-freedom model (Figure 1) of this 

experimental technique [4]. Starting with the mathematical 

representation of the identification in the frequency domain: 

 
𝐹

𝑋
= (𝑘 −𝑚𝜔2) + 𝑗𝑐𝜔 (1) 

 

Measurement errors can be applied with the following 

model: 

𝑋̅ = (1 +Δ𝑥)𝑋 

 (2) 

𝐹̅ = (1 +Δ𝑓)𝐹 

Δ𝑥 and Δ𝑓 are complex numbers representing errors in 

measured amplitude and phase of the true signal. When the 

measured signals are utilized in the identification process, the 

identified coefficients (𝑘̅ and 𝑐̅) are different from truth (k 

and c): 

 
𝐹̅

𝑋̅
= (𝑘̅ − 𝑚𝜔2) + 𝑗𝑐̅𝜔 (3) 

 

Through substitution, the identified coefficients can be 

equated to the true coefficients and then through algebraic 

manipulations, the uncertainty representations can be written 

as follows: 
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𝑘
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𝑘
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𝑐
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The exact simplification from Δ𝑥 and Δ𝑓 to Δ𝑡𝑜𝑡 can be 

seen in reference [4]. It can be seen that the inertia of the 

excited component plays a role in the error of the identified 

coefficient. This leads to high uncertainties at high 

frequencies, especially above the rotor-bearing system’s 

natural frequency where inertia dominates the dynamics. 

However, if instead of identifying the dynamic coefficients 

via the applied force on the system, the bearing force is 

directly measured, the inertial term no longer plays a role in 

the uncertainty. The Active Load Cell concept proposes to 

enable this by accurately identifying the bearing force 

directly. The fundamental model for the ALC introduces a 

second degree of freedom – an additional component which 

does not have the dynamic excitation force directly applied to 

it. Consider the two-mass system with two external forces 

depicted in Figure 2. 

 
Figure 2: Two mass system with two external forces 

 

The equations of motion for the two masses in this system 

can be written as equations 5 and 6. 

 

𝑚1𝑥̈1 = −𝐹1 + 𝑘(𝑥2 − 𝑥1) + 𝑐(𝑥̇2 − 𝑥̇1) (5) 

 

𝑚2𝑥̈2 = 𝐹2 − 𝑘(𝑥2 − 𝑥1) − 𝑐(𝑥̇2 − 𝑥̇1) (6) 

 

where F1 and F2 are externally applied forces. F1 represents a 

dynamic excitation force applied to the system. F2 represents 

the force applied via the Active Load Cell. Another force, Fb, 

can also be defined such that 

 

𝐹𝑏 = 𝑘(𝑥2 − 𝑥1) + 𝑐(𝑥̇2 − 𝑥̇1) (7) 

 

which represents the force of a fluid-film bearing connecting 

the two masses. Substituting (7) into (5) and (6) results in: 

 

𝑚1𝑥̈1 = −𝐹1 + 𝐹𝑏 (8) 

 

𝑚2𝑥̈2 = −𝐹𝑏 + 𝐹2 (9) 

 

By observation, when the acceleration of the mass, m2, is 

exactly zero, the forces acting on the body, Fb and F2 are 

equivalent. It is also important to note that in this case, the 

value of Fb can be determined without any knowledge of F1, 

and with an accuracy based on the precision with which the 

input force F2 is known. Therefore by controlling the external 



force, F2, such that the acceleration of x2 is driven to zero, an 

accurate measurement of Fb can be made. 

    Noting that bearing coefficient identification experiments 

utilize the relative displacement between the rotor and stator: 

 

𝑥2 − 𝑥1 = 𝑥𝑚  (10) 

 

𝑥̇2 − 𝑥̇1 = 𝑥̇𝑚  (11) 

 

This changes the frequency domain mathematical 

identification model to the form: 

 
𝐹𝑏

𝑋𝑚
= 𝑘 + 𝑗𝑐𝜔  (12) 

 

    Following the same process of applying measurement error 

modeling from [4] yields the following expression for 

dynamic coefficient identification uncertainty: 

 

𝑘̅ − 𝑘

𝑘
= 𝑅𝑒(Δ𝑡𝑜𝑡) − 𝐼𝑚(Δ𝑡𝑜𝑡)(

𝑐𝜔

𝑘
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 (13) 
𝑐̅ − 𝑐

𝑐
= 𝑅𝑒(Δ𝑡𝑜𝑡) + 𝐼𝑚(Δ𝑡𝑜𝑡)(

𝑘

𝑐𝜔
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    These equations demonstrate that by measuring the bearing 

force via the Active Load Cell, identification uncertainty 

grows linearly as a function of frequency rather than 

quadratically, allowing for more accurate validation of 

bearing models at higher frequencies. 

CONTROL SYSTEM ARCHITECTURE 

A simplified schematic of an Active Load Cell based Fluid 

Film Bearing Test Rig (FFBTR) is shown in Figure 3 and 

consists of the following components: i) rotor, ii) fluid-film 

bearing, iii) active magnetic bearings to provide both static 

and dynamic loading, iv) an array of magnetic actuators 

supporting the bearing housing, and v) an electrodynamic 

shaker. 

 
Figure 3: Fluid Film Bearing Test Rig with Active Load Cell 

 

Unlike other bearing test rigs, knowledge of the excitation 

forces applied to the rotor (or stator) are not used in order to 

experimentally identify the fluid-film bearing dynamic 

coefficients (stiffness and damping). Instead, the 

electrodynamic shaker is used to determine the bearing force 

directly. This shaker is responsible for providing dynamic, 

adaptive cancellation forces directly on the bearing housing, 

which results in zeroing out the motion of the housing and 

thus exactly cancelling out/identifying the force applied by 

the bearing (Fb). 

The configuration in Figure 3 represents a test rig that 

focuses on single-frequency identification experiments for 

fluid-film bearings. The array of supporting magnetic 

actuators behave like magnetic bearings supporting the 

bearing stator for all frequencies other than the test 

frequency. A notch filter or adaptive cancellation algorithm 

[6] can be used to nullify the supporting actuator force 

contribution at the test frequency such that only the 

electrodynamic actuator is acting at the frequency of interest. 

Thus, the only forces measured by the Active Load Cell are 

those that the bearing is exerting at the selected excitation 

frequency. 

The components which comprise the Active Load Cell in 

relation to the FFBTR depicted in Figure 3 are: i) 

electrodynamic shaker; ii) one (or more) accelerometers on 

the bearing housing; and iii) a current sensor on the shaker. 

The block diagram in Figure 4 represents the high-level 

interaction between the Active Load Cell test rig components. 

This system model is helpful in understanding the 

construction of the test rig, as well as the simulation model to 

be discussed in later sections. 

 
Figure 4: Block diagram representation of Active Load Cell System 

 

Following the flow of the block diagram in Figure 4, the 

excitation shaker provides a dynamic force at a given test 

frequency, amplitude, and bias (static load). In the FFBTR, 

this would represent the static load supported by the fluid-

film bearing plus the dynamic excitation experienced by the 

bearing. This force is directly applied to the rotor mass which 

represents the inertia of the rotor in the FFBTR. The bearing, 

which is situated between the rotor and housing masses, 

provides an equal and opposite force between these bodies 

arising from the mechanics of the bearing (i.e. hydrodynamic 

force for a fluid-film bearing). The housing mass also has an 

electrodynamic shaker coupled to it which produces the 

cancellation force at the same frequency, but with an 

amplitude and phase as dictated by an adaptive cancellation 

algorithm [6]. The overall control system features two 

independent control loops. The first control loop provides 

stabilization of the housing position at all frequencies that are 

not the test frequency. The second control loop takes data 



from the accelerometer(s) mounted to the housing body and 

uses this information to adaptively adjust the amplitude and 

phase of the electrodynamic shaker. This controller is 

responsible for altering the current into the cancellation 

shaker to adaptively match the bearing force applied to the 

housing at the applied test frequency. The identified bearing 

force is in the form: 

 

Fb(t)=Ab cos(b t + b)  (14) 

 

TEST RIG DESIGN 

In order to validate the active load cell concept before 

applying it to a fluid-film bearing test rig, a simplified Active 

Load Cell test rig was first developed.  A conceptual design 

of this test rig is shown in Figure 5. The major test rig 

components are as follows: i) Rotor Mass; ii) Housing Mass; 

iii) Bearing; iv) Excitation Shaker; v) Cancellation Shaker; 

vi) 3 DOF Magnetic Bearing; vii) Flexures. The test rig is 

roughly 1.2 m (48 in) tall. And in order to design the ALC 

test rig to roughly replicate the associated fluid-film bearing 

test rig components, the rotor and housing masses of the ALC 

test rig were designed to have a similar ratio to that of the 

FFBTR (refer to Tables II and III). 

 
Figure 5: Conceptual Design of Active Load Cell Test Rig 

 

TEST RIG SIMULATION 

A full simulation of the Active Load Cell test rig as depicted 

in Figure 4 was developed in order to analyze the capabilities 

of the test rig prior to manufacture. Due to the fact that the 

exact load at the bearing and bearing properties are known in 

the simulation model, and all signals are available for 

evaluation, the use of the simulation model is advantageous 

in helping to understand the full capabilities of the active load 

cell concept. The overall system was modeled in Simulink to 

enable time-transient simulation experiments. This allows for 

realistic representation of the operation and performance of 

the overall Active Load Cell system. 

Magnetic suspension of the housing is achieved through a 

classical PID feedback control scheme. Each of the four sets 

of actuators in either corner of the housing mass are 

controlled independently, as depicted in Figure 6. The current 

into the upper and lower actuators on any particular actuator 

set are dictated by a single sensor and PID control loop. The 

sensor measures the gap and compares this value to a 

reference. The controller in turn outputs a control voltage, 

which produces a current and corresponding force to keep the 

housing centered. 

 
 

Figure 6: Housing Suspension Control (side view) 

 

The primary objective of the Active Load Cell is to counter 

the effects of the dynamic excitation force on the housing 

such that the acceleration of the housing approaches zero. 

This cancellation is achieved via an adaptive open-loop 

control algorithm [6], which superimposes an additional 

synchronous force on top of the feedback stabilization control 

loop. This open-loop control force can be altered as the 

characteristics (frequency, amplitude, phase) of the applied 

dynamic force are changed without any impact on the 

magnetic actuator feedback stabilization controller. This is 

due to the fact that the open-loop control force is effectively 

an external disturbance force, from the perspective of the 

stabilization control loop. And therefore, the result is a forced 

response behavior of the feedback stabilization control 

system, which does not affect system stability. 

In order to ensure optimal performance of the force 

cancellation control loop, an iterative method is used to adapt 

the forces to reach a predetermined performance goal 

(minimize housing acceleration). This cancellation controller 

is referred to as adaptive open-loop control [9], which has 

been well documented by R.W. Hope and C.R. Knospe [10] 

with more experimental results reported in Knospe et al. [6]. 

The implementation of the adaptive open-loop control 

algorithm in this application is as follows: 

1. Run the simulation under an external harmonic 

excitation load but with no input to the cancellation shaker 

and observe the resulting acceleration. 

2. Determine the amplitude and phase of the acceleration 

using a Fourier transform (obtain x0). 

3. Define a batch of arbitrary control inputs, ui 

(cancellation shaker forces). Run the simulation at each input 

and observe the resulting acceleration, xi. 

4. Calculate the influence coefficient matrix (T): T = X/U. 

5. Define the first adaptive input into the cancellation 

shaker using ui+1 =T1xi 

6. Observe the resulting acceleration, xi+1 and repeat the 

iterative process until the value has effectively converged to 

zero (i.e. the sensor noise floor). 



SIMULATION RESULTS 

Due to variations in the system gain when excited at 

different frequencies, the system response may result in an 

unacceptably high or low amount of relative motion. Figure 7 

shows how the system response varies as a function of test 

frequency for a constant pk-pk force amplitude. If the 

system’s response is small compared with the displacement 

sensor’s resolution, the uncertainty of the identification 

scheme will increase significantly. Therefore, it is useful to 

adjust the excitation force amplitudes in order to achieve a 

consistent relative displacement for all excitation frequencies. 

The result of this process is a Force-Frequency relationship 

curve, which can be used in the test cases to ensure the 

applied load is appropriate for each given frequency. For the 

purposes of this test rig, the target relative motion was chosen 

to be 0.005 mm. Figure 8 depicts the compensated dynamic 

forcing function which results in a consistent relative 

displacement at all test frequencies. 

 

 
Figure 7. Displacement vs. frequency for a fixed input force 

 
Figure 8. Force vs. frequency for a constant displacement amplitude 

 

In order to validate the simulation model and control 

technique, the simulation model was initially run without the 

inclusion of any noise or measurement errors. Results of this 

initial testing demonstrated the feasibility of the concept and 

an ability to accurately identify the bearing forces with 

negligible error with respect to truth for frequencies up to 

2750 rad/s (440Hz). Analyzing this idealized scenario is 

useful for an initial proof of concept, but in order to more 

accurately predict the capabilities of the actual test rig, it is 

necessary to identify and simulate all sources of potential 

measurement error which will be present in the actual test rig 

and observe their effects on the bearing force identification 

results. Errors can originate from a large variety of sources, 

such as calibration of equipment, manufacturing tolerances, 

electronic hardware delays, etc. 

Sources of Measurement Error: For the purposes of this 

work, the sources of error to be analyzed were directly related 

to all sensor readings associated with the control system and 

force identification procedure. This best represents the types 

of errors that would be present in the actual system. The 

sources of error and error ranges that were included in this 

study are listed in Table I. For this study, errors within their 

respective ranges were randomized and applied to the model 

and a Monte Carlo analysis procedure consisting of 250 test 

cases was performed. Using the results of these parametric 

runs, it is possible to observe the statistical distributions of 

the final force amplitude and phase errors to develop 

confidence intervals. 

 
Table I. Monte Carlo simulation parameter values 

 

 
 

The stiffness range of bearings to be identified by the final 

FFBTR is roughly 7.0x107 – 3.5x108 N/m (400,000 - 

2,000,000 lbf/in). In order to begin to understand the bearing 

force identification capability of the ALC test rig, two 

bearing test cases with stiffnesses towards either end of this 

range were chosen to be analyzed. However, due to different 

equipment masses (between the ALCTR and FFBTR), it was 

necessary to find a method to determine a suitable equivalent 

stiffness range for the ALC test rig. As a first approximation, 

the natural frequency of the two-mass system joined by a 

spring was used as the approximation method. The natural 

frequency of this system can be determined by: 

 

k(m1 + m2) = (m1 m2) n
2   (15) 

 

For the lower and upper stiffness values, the natural system 

frequency was calculated and used to determine an equivalent 

stiffness for the ALC test rig, which resulted in the same 

natural frequency. As displayed in Table III, the equivalent 

ALC stiffness range is approximately 2.7x107 - 1.3x108 N/m 



(154,000 - 742,000 lbf/in). Two test bearings were chosen to 

study, one at each end of this bearing stiffness range. 

The “soft” bearing (Bearing 1) was modeled with the 

following parameters: 

• Stiffness: 30,000,000 N/m (171,000 lbf/in) 

• Damping: 1500 Ns/m (8.5 lbf s/in) 

And the “stiff” bearing (Bearing 2) was modeled using: 

• Stiffness: 100,000,000 N/m (571,000 lbf/in) 

• Damping: 5000 Ns/m (28.5 lbfs/in) 

 
Table II. Masses of FFBTR and Active Load Cell Test Rig 

 
 
Table III. Equivalent Active Load Cell Test Rig stiffnesses 

 
 

Test Frequencies: For consistency, all trials were run at 

each of the frequencies listed in Table IV. These frequencies 

are within the range of test frequencies expected to be used in 

conjunction with the fluid film bearing test rig, and were 

chosen based on a logarithmic scale. 

 
Table IV. Active Load Cell test frequencies 

 
 

The test cases were run in the following sequence: 

1. For the given test frequency and dynamic force 

amplitude, the model was run with no measurement errors. 

This was used as a visual check to make sure the 

displacement caused by the dynamic force was appropriate. 

Figure 9 shows the uncontrolled housing motion at a test 

frequency of 650 rad/s (103 Hz). 

2. Apply the adaptive open loop controller with no 

measurement errors present to be sure the identification 

process is working correctly. Observe the controlled housing 

response (example is shown in Figure 10 for the same test 

conditions – 650 rad/s). 

3. Once the model has been verified, run the Monte Carlo 

studies by varying the measurement error values randomly 

for 250 simulation test cases and recording the cancellation 

force amplitude and phase errors with respect to the known 

true bearing force/phase. 

4. Build a statistical distribution of the Monte Carlo 

studies to develop anticipated errors and confidence intervals. 

 

 
Figure 9. Free housing motion from external force excitation (650 rad/s) 

 

 
Figure 10: Controlled housing motion under external force excitation (650 
rad/s) 

 

An example of the bearing force amplitude and phase 

error Monte Carlo results for Bearing 1 (“soft” bearing) at a 

single test frequency (120 rad/s) are shown in Figures 11 and 

12. Figures 13 through 16 graphically depict the results for 

the two test bearings over the entire test frequency range. 

Figures 13 through 14 show the median errors and limits for 

the 95% confidence bounds for all test frequencies for 

Bearing 1. Most test cases fall at or below the 1% target force 

amplitude error, and all test cases are within the 1 degree 

target phase error. Figures 15 through 16 show the median 

errors and limits of the 95% confidence bounds for all test 

frequencies for Bearing 2 (“stiff” bearing). Similar to bearing 

1, most force amplitude errors are at or below the 1% target, 

and all phase errors are below the 1 degree error target. 

 

 
 

Figure 11: “Soft” bearing Monte Carlo amplitude error distribution (120 rad/s) 

 



 
 

Figure 12: “Soft” bearing Monte Carlo phase error distribution (120 rad/s) 

 

 
Figure 13: Force amplitude error (%) vs. frequency (Bearing 1) 

 

 
Figure 14: Phase error (deg) vs. frequency (Bearing 1) 

 

DISCUSSION 

A. Bearing Force Identification 

A principle goal of this work was to accurately identify 

the bearing force within 1% of true amplitude, and 1 degree 

of true phase. Collecting the results for all frequencies, the 

medians of 81.4% of amplitude measurements and 100% of 

phase measurements fell within this target. Concatenating all 

results and error boundaries for each bearing, the following 

confidence intervals can be established for each experiment 

(refer to Table V). 

From the graphical simulation results depicted in the 

previous section, it is obvious that the expected errors are  

 
Figure 15: Force amplitude error (%) vs. frequency (Bearing 2) 

 

 
Figure 16: Phase error (deg) vs. frequency (Bearing 2) 

 
Table V. Total amplitude and phase error statistical results 

 

 
 

frequency dependent. For example, the median amplitude 

errors were higher for all cases at 120 rad/s compared with 

the errors at 205 rad/s, and as such, it can be expected that an 

experiment run at the lower frequency would result in larger 

force identification errors. The error ranges were not 

consistent between bearings, however, larger errors were 

generally experienced at the lowest and highest test 

frequencies for each bearing. 

B. Dynamic Coefficient Identification 

While the ALC test rig has been shown to accurately 

identify the force at the bearing, the ultimate purpose is to use 

this force measurement to identify the bearing dynamic 

coefficients (stiffness and damping). As discussed previously, 

these coefficients can be determined through the use of the 

identified bearing force (Fb) and the sensed relative 

displacement (xm) between the rotor and housing (refer to 

equation (12)). 

Similar to the bearing force identification procedure, a 

Monte Carlo study was performed for the stiffness and 

damping coefficient identification process. And since the 

actual stiffness and damping values of the test bearing are 

known exactly in the simulation model (unlike an actual 



bearing test rig), errors in coefficient determination can be 

directly calculated. This Monte Carlo study was performed at 

three test frequencies (205, 650 and 2340 rad/s) for both test 

bearings, and the dynamic coefficient identification error 

results (median and 95% confidence intervals) are 

summarized in Table VI. 

For both bearings, the identified stiffness values were 

found to be within 1% of the actual truth values for all test 

frequencies. This result is significant, and demonstrates the 

promise of utilizing the Active Load Cell concept for the 

accurate determination of fluid-film bearing dynamic 

coefficients. 

Although the damping coefficient identification errors are 

higher than those associated with the stiffness coefficients, 

the results are also promising (especially at the higher 

frequency range where the errors are <10%). The largest 

damping errors occur at the lowest test frequency, which can 

be attributed to the inherently larger percent errors in the 

velocity measurements based on displacement sensor 

readings at lower frequencies. 

 
Table VI. Stiffness and damping identification error results for Bearing 1 & 2 

 

 
 

CONCLUSIONS 

 The analysis presented in this paper suggest that test rigs 

developed for the identification of dynamic bearing 

coefficients should strive to measure the force generated 

by the fluid film more directly. 

 If the bearing force can be measured without the need for 

inertial compensation, the uncertainty in the dynamic 

coefficients is a linear function of test frequency. This is 

a significant improvement (especially at higher 

frequencies) from the quadratic error relationship with 

respect to test frequency associated with traditional test 

rig methods. 

 An Active Load Cell is proposed as a method to achieve 

accurate bearing force identification. The results of the 

simulation study indicate that the Active Load Cell is a 

very accurate method for determining force amplitude 

and phase predictions across the tested frequency range 

(100-3000 rad/s (20-500 Hz)). The overall median error 

in force amplitude identification was approximately 

0.35% for the two bearing examples. And the overall 

median error in phase identification was approximately 

0.12 degrees. 

 The results of the stiffness and damping coefficient error 

study indicate that the Active Load Cell concept may 

significantly improve the accuracy of bearing dynamic 

coefficient identification. The trial runs demonstrated 

coefficient identification which was much more accurate 

for all stiffness and most damping results than all 

previous methods of identifying these coefficients [3, 4]. 

 The simulation study results strongly suggest that in 

addition to its use within a FFBTR, the Active Load Cell 

could be very beneficial as a standalone test rig capable 

of the accurate identification of unknown dynamic forces 

more generally. 
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