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Abstract— A novel system is described for achieving orientation 

controlled zero power levitation. The principles of operation are 

explained, as well as the zero power feedback control strategy. 

Expected system limitations and system parameter selection is 

discussed.  Numerical data is presented in support of the 

feasibility of the system and controller.  

A. Introduction 

The ability to magnetically levitate a rigid body in more 

than one dimension, with zero power, using fixed hybrid

electromagnets (HEMs) is inherently dependent on the

orientation of the levitated body, as the attractive force of the 

permanent magnets are dependent on the air gap between the 
HEM and the target.  Such zero power magnetically levitated

platforms will increase the magnitude of their tilt as the 

eccentricity of the load is increased [1,2].

For many operations, it is desirable to be able to select the 
orientation of the levitated object.  To achieve zero power 
performance while maintaining a level orientation, a novel 
system is proposed here.  Fig. 1 outlines this system, where 
the active components are on a fixed stage with a free floating 
passive platform. Such a configuration would be beneficial in 
pick and place operations, where the active components 
would

B. Hardware 

Figure 1.  Perspetive view of system where passive platform is suspended 
below HEM array. Some parts hidden or shown as transparent. HEM3 is 

fixed, while HEM1 and HEM2 rotate about the guide rails.

Figure 2.  (a) Detiled view of active top layer. Two HEMs rotate around the

guide rail at angles θ1 and θ2, while the third remains fixed. (b) Passtive 
platform where only the target strips are magnetically permeable.

The novel design of this system differs from typical zero 
power levitation paradigms in employing two HEMs which 
move circularly on a guide rail, driven by the gear system as 
detailed in fig. 2(a). The passive magnetic target is detailed in 
fig. 2(b), where its geometry allows for the electrometric 
circuit at each HEM shown in fig. 3. The third HEM remains 
fixed, and its small target aids in passively controlling 
platform rotation about the z-axis. Together, the geometry of 
all three HEMs and targets aid in the passive control of the 
platforms lateral motion in x and y. 

would exist on a robotic arm. Alternatively, the active 
components could exist on the levitated platform with a 
passive target.  Such a configuration could be suited for a 2 
dimensional conveyance if combined with an x-y inductive 
motor, however, due to the non-static nature of the HEM 
positions, the system would not be suited towards conveyance 
along a 1 dimensional rail system [1].



C. Operating Space 

It is anticipated that the levitated platform will be loaded 
eccentrically with mass. It is important to consider under what 
loading conditions zero power levitation can be achieved.  For 
level levitation, the air gap between each HEM and its target 
must be identical, therefore, the attractive force at each HEM 
will be equal. Geometrically then, zero power levitation can 
only be achieved when the overall center of mass is at the 
centroid of the three HEMs. The x and y values for centroid C 
in terms of 𝜃1 and 𝜃2 is given as:

𝐶𝑥,𝑦 = {
𝑟

3
(cos 𝜃1 + cos θ2 + 1),

𝑟

3
(sin 𝜃1 − sin 𝜃2)} 

Where r is the distance from the center of rotation to each 

HEM. An example orientation is visualized in fig. 4. 

All achievable centroid positions achievable by eq. (1) 
were numerically calculated and are shown as the pink 
shaded area in fig. 4. The solution is asymmetric due to the 

single HEM at location three being fixed. Practically, all 

mathematical solutions cannot be achieved due to the fact 

that the HEMs physically occupy space and cannot overlap.  

Applying the constraints that the HEMs will not be within 

15 angular degrees of one another, HEM 1 should not move 

into the negative y space, HEM 2 should not move into the 

positive y space, and the operatizing space should be radially 

symmetric, a final selected operating space in which the 

overall center of mass of the system should exist was selected 

and is shaded in blue in fig. 4. Mathematically, this space is a 

circle of size 0.2r, and is limited by moving the center of mass 
long the y axis. This engineering operating space aids the 
assumption that the system rotates about its geometric center, 
as well as offers operational practicality. 

D. Controllability and Observatbility 

The controllability and observability of the linearized 

system at all operating points is validated, where the 

following terminology is used: 

𝑧0 – z height of center of platform

𝑖0,𝑛 – Initial current in HEM ‘n’

∝ - Tipping angle 

𝛽 – Tilting angle 

𝐹𝑧,𝑛 – Force contribution at HEM ‘n’ from initial height

𝐹𝑖,𝑛 – Force contribution at HEM ‘n’ from initial current

𝐹𝑛 – Force at HEM ‘n’

𝛿𝑧 – Small height displacement of platform center 

𝑘i – Current stiffness matrix

𝑘𝑧 – Air gap stiffness matrix

𝐹𝑧 – Equivalent force at center of platform

𝑇𝑥 – Equivalent moment around x

Ty – Equivalent moment about y

𝐹𝑛 – Total force at HEM ‘n’

A simplified schematic is shown in fig. 5. 

First, the initial conditions are defined such that the 

platform is level, where the z height of the center of the 

platform is such that the attractive force of the HEMs with 

zero current is equivalent to the total weight and the initial 

currents are such that are required to maintain the level 

orientation. Geometrically, we can develop the force 

transformation: 

Figure 3.  Example of a typical HEM consisting of electromagnetic coils (2) 
and a permanent magnet (1). The passive target, shown in yellow, allows the 

completion of the electromagnetic circuit. [1]    

Figure 4.  Example centroid of HEMs. Mathematically achievable 

operating space shaded in pink. Engineering operating space shaded in blue. 

Figure 5.  Smiplified schematic. 𝜃1 and 𝜃2 are defined as positive angles 
from the positive x axis, as shown, where the HEMs rotate about radius ‘r’. 



{

𝐹𝑧

𝑇𝑥

𝑇𝑦

} = [𝑇] {

𝐹1

𝐹2

𝐹3

}   

Where: 

[𝑇] = [
1 1 1

𝑟 sin 𝜃1 −𝑟 sin 𝜃2 0
−𝑟 cos 𝜃1 −𝑟 cos 𝜃2 −𝑟

] (3) 

Considering geometric constraints and using a small angle 

approximation for tipping and tilting, the displacement for 

each HEM can be given by: 

{

𝛿𝑧1

𝛿𝑧2

𝛿𝑧3

} = [𝑇]′ {
𝛿𝑧
𝛿𝛼
𝛿𝛽

} (4) 

Considering force and moment equilibrium from the initial 

conditions, the equations of motion can be given as: 

{

𝑀𝑧̈
𝐼𝑥 ∝̈

𝐼𝑦𝛽̈
} = {

𝐹𝑧

𝑇𝑥

𝑇𝑦

}

𝑧

+ {

𝐹𝑧

𝑇𝑥

𝑇𝑦

}

𝑖

(5) 

Where the first and second terms are the force contributions 

from the z air gaps and HEM currents respectively. This can 

be expanded as: 

{

𝑀𝑧̈
𝐼𝑥 ∝̈

𝐼𝑦𝛽̈
} = 𝑘𝑧𝑇𝑇′ {

𝛿𝑧
𝛿𝛼
𝛿𝛽

} + ki𝑇 {

𝛿𝑖1

𝛿𝑖2

𝛿𝑖3

} (6) 

Where 𝑘𝑖 and 𝑘𝑧 are the linearized stiffness coefficients. 
These coefficients differ by HEM and can be found 

analytically or experimentally. An example distribution is 

shown in fig. 6 [1].  

We can then define the state variable: 

X = [𝛿𝑧, 𝛿𝛼, 𝛿𝛽, 𝛿𝑧̇, 𝛿𝛼̇, 𝛿𝛽̇ ]′ (7) 

The state space realization becomes: 

𝑋̇ = [
03𝑥3 𝐼3𝑥3

𝑘𝑧𝑇𝑇′ 03𝑥3
] 𝑋 + [

03𝑥3

𝑘𝑖𝑇
] {

𝛿𝑖1

𝛿𝑖2

𝛿𝑖3

} (8) 

For strictly stability control, this can be expressed as: 

𝑋̇ = 𝐴𝑋 + 𝐵 (9) 

𝑌 = 𝐶𝑋 + 𝐷𝑈 (10) 

𝐴 = [
03𝑥3 𝐼3𝑥3

𝑘𝑧𝑇𝑇′ 03𝑥3
] (11) 

𝐵 = [
03𝑥3

𝑘𝑖𝑇
] (12) 

𝐶 = [𝐼3𝑥3, 03𝑥3] (13) 

𝐷 = [03𝑥3, 03𝑥3] (14) 

The controllability and observability matrices R and Q 

respectively become: 

𝑅 = [𝐴, 𝐴𝐵, 𝐴2𝐵, … 𝐴5𝐵] (15) 

𝑄 = [𝐶, 𝐶𝐵, 𝐶2𝐵, … 𝐶5𝐵] (16) 

Which shows the linearized system is both controllable and 

observable at all operating points as both matrices R and Q 

are full rank with non-zero coefficients and where 𝜃2 is not 

equal to  − 𝜃1.

E. Control Strategy 

While discussing the angular control strategy for 𝜃1 and 
𝜃2, it is assumed that the stability controller is sufficiently 
robust so that it can maintain level levitation. The 

controllability of the system at all operating points has been 

shown in the previous section, so for a system which moves 

sufficiently slow with adequate gain scheduling, such a 

controller is feasible. Robust levitation of magnetically 

levitated platforms has already been conducted in previous 

research [1], and is not at focus here currently. 

The optimal values for 𝜃1 and 𝜃2 for zero-power 
levitation can be achieved using feedback from the HEM 

coil currents 𝑖1, 𝑖2, and 𝑖3 during level levitation of the 

platform.

Since the air gap – and therefor the force contributions –

for each HEM’s permanent magnet is equal when the 

platform is level, any variance in the currents 𝑖𝑛  is 

attributed directly to the eccentricity of the load, or in other 

words to the moment load . For level levitation, when and 

only when the platform is loaded symmetrically will all 

currents 𝑖𝑛 will be equal. Eccentrically moving the load will 

then variance in the currents 𝑖𝑛. The moment load about the 

centroid 𝑇𝐶,𝑥 and 𝑇𝐶,𝑦         as a function of 𝑖1, 𝑖2, 𝑖3, and 𝜃1 and 

𝜃2 is given as:

{
𝑇𝐶,𝑥

𝑇𝐶,𝑦
} = [

𝑟 sin 𝜃1 − 𝐶𝑦 −𝑟 sin 𝜃2 − 𝐶𝑦 −𝐶𝑦

−𝑟 cos 𝜃1 − 𝐶𝑥 −𝑟 cos 𝜃2 − 𝐶𝑥 −𝐶𝑥
] {

𝑖1𝐾𝑖

𝑖2𝐾𝑖

𝑖3𝐾𝑖

} (17) 

Where 𝐾𝑖 is a linearized stiffness coefficient for the 

operating conditions, and the centroid positions 𝐶𝑥 and 𝐶𝑦 

in x and y respectively are given in eq. (1). As the 𝜃1 and 𝜃2 

approach

Figure 6.  Anylitical and epxeriemental force distribution as a function of 

airgap and current for a particular HEM [1]. 



the correct solution, 𝑇𝐶,𝑥 . 𝑇𝐶,𝑦 , and therefore the variance 
in 𝑖𝑛 all approach zero.

Next, we consider the relationship between operating 

angles 𝜃1 and 𝜃2 and eccentric loads, or in other words 
moment loads. As elaborated in section C, only one solution 

𝜃1 and 𝜃2 exists for a given eccentric load, which is based

on the location of the overall center of mass. The solution 

exists at the centroid of the thee HEMs and is given by eq. 

(1).  Although the forward solution for x and y of the 

centroid is straight forward given 𝜃1 and 𝜃2, practically, the

inverse solution for 𝜃1 and 𝜃2 given x and y is

computationally taxing. Therefore, for application, it is 

better to pre-calculate this solution to the resolution of the 

system’s sensors and employ a look-up table for the inverse 

function. Doing so yields 𝜃1 and 𝜃2 as a function of the x

and y location of the center of mass. The location of the 
center of mass correlates to the moment load about the x

and y axis as follows:  

 {
𝑇0,𝑥

𝑇0,𝑦
} = 𝑀𝑔 {

𝐶𝑦

−𝐶𝑥
} (18) 

While the total mass ‘M’ may be unknown, it can be seen 

that the direction of moment is not dependent on the total 

load, only on the location of the centroid.  

In summary, the metrics 𝑇𝐶,𝑥 and 𝑇𝐶,𝑦 indicate the 
moment direction of the load, with directional error 

decreasing as 𝜃1 and 𝜃2 approach the correct solution. And,

a relationship has been developed which allows the control

of moment loads in x in y through adjustments of 𝜃1 and 𝜃2.

Together, using 𝜃1 and 𝜃2 to adjust the zero power moment

of the centroid in x and y based on moment in the direction 

indicated by 𝑇𝐶,𝑥 and 𝑇𝐶,𝑦 , with sufficiently small steps or a

sufficiently slow trajectory, convergence to the zero power 

solution for 𝜃1 and 𝜃2 can be archived independently to the

z height zero power solution.  

F. Numerical Example 

A numerical example is provided to verify the 

convergence of the control strategy. Again, the solution is 

expected to converge as the calculated moment about the 

HEM’s calculated centroid becomes a closer to a pure 

moment as the HEM centroid approaches the location of the 

center of mass.  

Let the arbitrary initial conditions of the simulation be 

given as in table 1: 

TABLE I.  INITIAL CONDITIONS FOR NUMERIC SIMULATION 

Variable  Parameter Value 

r Radius to HEM 1 (m) 

Cx Center of Mass x -0.19(m) 

Cy Center of Mass y 0.19 (m) 

𝐾𝑖 Current Stiffness 1 (N/A) 

𝜃1,0 Initial Angle HEM 1 2𝜋/3(𝑟𝑎𝑑) 

𝜃2,0 Initial Angle HEM 2 2𝜋/3 (𝑟𝑎𝑑) 

Fz Force Contribution Air Gap 0.5Mg (N) 

dx Maximum Step Size 0.025 (m) 

Fig. 7 shows a simplified block diagram for the numerical 

analysis.   

     It is important to note that the weight of the load is only 

partially accommodated by the z height of the platform.  

This is the most generic case of the solution, and shows that 

the angular solution can be found for zero power 

independently from the z solution.  

A simplified block diagram, shown in fig. 7, outlines the

overall method of the iterative calculation. Again, it is 

assumed that the system can remain level at all times. 

Firstly, the current at each HEM is calculated by solving the 

system of equations, where 𝑖1 = 𝐹𝑖 due to a stiffness of 1.

{

𝑀𝑔
𝐶𝑦𝑀𝑔

𝐶𝑥𝑀𝑔
} = [𝑇] {

𝑖1

𝑖2

𝑖3

}   

Next, eq. (17) is used to calculate the moment about the 

centroid of the HEMs in x and y. The centroid of the HEMs 

is then moved proportionally to the moment about the 

centroid. Positive motions of the centroid along the x and y 

axes correspond with increasing moment around y and

negative moment about x respectively. The centroid is 

moved in sufficiently small steps to prevent overshoot of 

the solution.   The centroid position then uniquely 

corresponds to angle pair 𝜃1 and 𝜃2 which can be solved

from the inverse of eq. (1). Again, as this task is 

computationally taxing, the inverse mapping is best pre-

calculated for operation. Finally, using the new HEM 

angular positions, the current is recalculated, and the loop 

reiterated until convergence.  

Figire 7. Block diagram showing loop for iterative numerical simulation.  



The simulation results for the conditions in table 1 are

presented in fig. 8.  It can be seen by the blue line that 

variance converges by 40 iterations. Here, variance has 

been scaled by 1000 for ease of viewing. The centroid 

position of the HEMs can be seen to converge to location 

of the center of mass. Finally, it can see the angular 

positions 𝜃1 and 𝜃2 converge to 2.2106 and 2.9068 radians,

respectively.

Again, it should be stressed that the overall system at 

this point is not in a the absolute zero power state, as the its

z height only allows for 0.5Mg to be passively 

accommodated.  Convergence of current variance to zero 

only indicates that the currents through the coils are equal; 

not necessarily that they are zero. However, as mentioned 

before, the zero power values for 𝜃1 and 𝜃2 are

independent from the zero power z height. In other words,

the discovered zero power 𝜃1 and 𝜃2 for this load is valid

all z heights, including the zero power z height.  

With this in mind, considering a zero power z height 

controller has already been developed in the past [1] it is  

feasible to say that with a closed loop system employing 

the described control strategy for zero power 𝜃1 and 𝜃2 , 
combined with a zero power z controller, orientation 

controlled zero power of a level platform can be achieved.  

G. Conclusion 

The novel system for orientation controlled zero power 

levitation was proposed. The controllability and 

observability of the system was verified at all operating 

points. The operating space of the system was determined,

and an engineering operating space was selected. A control 

strategy was introduced for the HEM angles, and was 
numerically verified to converge to the zero power angular 
solution. Combined with past work on a zero power z 
controller, the feasibility of the novel system was 
established.  

Further, it was established that the zero power angular 

solution is independent from the zero power z solution.
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Figire 8. Simulation results. HEM Centroid position converges to 

{-0.19,0.19} (m), Variance converges to zero, and theta 1 and theta two 

converge to 2.2106 2.9068 (rad) respectively.  

This aspect of operation makes the system particularly 
applicable for repeated pick and place operations where the 
center of mass is similarly located for each cycle.  In such a 
case, initial the HEM angles would be calibrated by 
statically suspending the object. Then, for subsequent 
cycles, the control currents would have lower variance due 
to a lower eccentricity of the center of mass from the 
centroid, thus reducing power consumption.  




