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Abstract
Rotor drops in magnetic bearing and unbalance in rotors have been objective of study for many years. The com-
bination of these two well-known phenomena led to an interesting chaotic response, when the rotor touches the
inner race of the back-up bearing. The present work explores the nonlinear rotor-backup-bearing dynamics both
theoretically and experimentally using a fully instrumented test rig, where the position of shaft, its angular velocity
and the contact forces between the shaft and the backup bearing are sampled at 25 kHz. The test rig is built by
a removable passive magnetic bearing, which allows for simulation of magnetic bearing failure (loose of carrying
capacity and rotor fall). A theoretical approach is given beforehand and supplies the basis of the study. Finally
the presented results are commented on the point of view of nonlinear dynamics applied to the practical use. The
theoretical and numerical analyzes are shown through Poincaré maps and double sided spectrum. The latter is
important to characterize the condition at different levels of unbalance between forward of backwards whirl. Our
preliminary results indicate that for small levels of unbalance the rotor oscillates at the bottom of the backup bear-
ing. When the levels of unbalance increase, the dynamical behaviour of the rotor changes, leading to extremely
harmful conditions, since the rotor can be lifted from the bottom of the bearing (contact state) and return, starting
to impact on the backup inner race innumerable times without reaching a steady state.
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1. Introduction

The possibility to use magnetic bearing rotor in industrial applications cannot be thought correctly without the use
of proper back-up bearings. Applications are many such as reaction wheels, centrifuges, energy efficiency machines,
(Gasch et al., 2002), (Schweitzer and Maslen, 2009), and among others. For all these machines, a safety element has to be
installed to prevent failures such as, power loss, that would cause the shaft to fall. The safety element consists normally of
a rolling bearing with inner race diameter bigger than the shaft diameter, but smaller than the one at the magnetic bearing.
It is designed to withstand the loads and impacts of a rotor. It also protects the whole system and prevents even more
disastrous situations.

Throughout the years, several works have been published on this subject. (Muszynska, 1989) has given a good
overview of the state of rotordynamics research of rub-related phenomena. In the work of (Johnson, 1962) a vertical shaft
with clearance with impacts was studied . (Black, 1968) published a work of a two-degree-of-freedom rotor and stator,
which is highly cited through the years. While in (Wojciech, M. S., 1986), a gyro pendulum with a piecewise linear model
was investigated with a good agreement with experimental results. (Zhang, 1988) showed a multi-degree model rotor at
a full annular rub using Black’s model. (Choy and Padovan, 1987) showed also the interaction between the rotor and the
casing on a bearing wall. By employing a proper impact model, chaos was reported by (Goldman and Muszynska, 1994).
(Piccoli and Weber, 1998) investigated an application to identify chaotic motion with Lyapunov exponents and Poincaré
Diagrams. In (Jiang and Ulbrich, 2005), dry friction whip investigated with an unbalanced rotor to stator contact. One of
the most cited is the work from (Pradetto and Schmied, 1992), where a one-ton rotor drop is analyzed. (Fumagalli, 1997)
tested the performance of a rotor sliding and tumbling while touching the auxiliary bearing.

In combination with Active Magnetic Bearings (AMB) technology, (Schweitzer, 1975), it is clear that safety bearings
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are an important subject of study. (Kirk, 1996) analyzed numerically the transient response of a rotor drop. (Ginzinger
et al., 2009) developed an active actuator to avoid severity of the contact. Moreover, in (Keogh, 2012), a comprehensive
study of different performance on auxiliary bearings was presented. Non-conventional geometries of the back-up bearing
were considered by (Simon, 2001), and later by (Zülow and Liebich, 2009) and then the new kind of bearing with pins
is presented by (Lahriri and Santos, 2012) and analyzes the forces that the structure receives, where the backup is. In
(Fonseca et al., 2015) it is shown that the same pins help to surpass the critical speed avoiding the backwards whirl.
However, in most industrial operating machines, the safety bearing is a common rolling bearing element, and the rotor
will lay down at the bottom allowing it to rotate without much damage to the system. An analysis of the rigid rotor on a
safety bearing showing chaotic behavior is shown by (Wang and Noah, 1998). Later the contact between the shaft and the
inner race was modeled using a finite element and was presented by (Cole et al., 2001). More recently, (Inayat-Hussain,
2010) gives an insight about the response of the rotors to different parameters with the bifurcation diagrams.

In this work, a theoretical and an experimental study of a passive magnetic bearing rotor colliding on the ball bearing
inner race is presented. The failure of the rotor will be induced by the rapid removal of the passive magnetic bearing
letting the rotor to fall. The tests will be compared with simulated results coming from a model of the rotor as a rigid
body impacting on an compliant surface. The main contribution of this work is to show that different levels of unbalance
change the dynamical behavior of the system and may lead to harmful situations, for which the backup bearing is not
designed.

2. Modeling the rotor-housing kinematics

2.1. The shaft
In Figure 1a and b, the mathematical model of the rotor is built to reproduce the assembled test rig. The rotor is

supported by one spherical ball bearing at point 0 and one movable passive magnetic bearing at point C. The back-up
bearing is mounted between them at point B. The rotor is modeled as a rigid body and external forces from the magnets,
imbalance and coupling are applied at points C, A and D respectively. The rotor is only allowed to rotate according to the
following three angular degrees of freedom: Γ(t), β(t), θ(t) and the angular velocities:

I Γ̇ =
[
Γ̇(t) 0 0

]T
, B1β̇ =

[
0 β̇(t) 0

]T
and B2θ̇ =

[
0 0 θ̇(t)

]T
. (1)

In figure 1a it is possible to see the reference frames used and the moving reference frame, B3, fixed to the rotating shaft
and positioned at the supporting point of the rotor.

a)

b)

Fig. 1 The moving frame references and the points of interests, A, B and C, where forces are present.

ITΓ =


1 0 0
0 cos Γ(t) sin Γ(t)
0 − sin Γ(t) cosΓ(t)

 , B1Tβ =


cos β(t) 0 − sin β(t)

0 1 0
sin β(t) 0 cos β(t)

 , B2Tθ =


cos θ(t) sin θ(t) 0
− sin θ(t) cos θ(t) 0

0 0 1

 . (2)

Each external force will generate a moment with respect to O and the relevant position vector are given by:

B3rOA =
[
rOA,x 0 rOA,z

]T
, B3rOB =

[
rOB,x rOB,y rOB,z

]T
and B3rOC =

[
0 0 rOC,z

]T
. (3)
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The inertia tensor referred to the supporting point is:

B3IO =


Ixx 0 −Ixz

0 Iyy 0
−Izx 0 Izz

 . (4)

where Ixz = murulOD. The absolute angular velocity of the represented at the moving reference frame B3 (where the inertia
tensor is constant) is given by:

ωB3 =B3 Γ̇ +B3 β̇ +B3 θ̇ =


cos (θ) cos (β) Γ̇ + sin (θ) β̇
− sin (θ) cos (β) Γ̇ + cos (θ) β̇

sin (β) Γ̇ + θ̇

 . (5)

The absolute acceleration is given by:

ω̇B3 =


−θ̇ sin (θ) cos (β) Γ̇ − cos (θ) β̇ sin (β) Γ̇ + cos (θ) cos (β) Γ̈ + θ̇ cos (θ) β̇ + sin (θ) β̈
−θ̇ cos (θ) cos (β) Γ̇ + sin (θ) β̇ sin (β) Γ̇ − sin (θ) cos (β) Γ̈ − θ̇ sin (θ) β̇ + cos (θ) β̈

β̇ cos (β) Γ̇ + sin (β) Γ̈ + θ̈

 . (6)

2.2. The inner and outer housing
In order to determine and acquire the force between the rotor shaft and the inner race, the back-up bearing is mounted

on an special casing, where there are four force transducers. The elastic elements k f t represent the force transducers
positioned between the bodies and the damping elements, ch and cv are structural damping. These damping terms are
present due to the four beams that hold the inner house to slide vertically and the outer house horizontally, two for each
directions. The back-up bearing is inside a block that is mounted inside a frame, called outer house. Then, the inner house
is only allowed to move horizontally inside it. Subsequently, the outer house moves only vertically. Figure 2a and Figure
2b show a schematic of the complete assembly.

a)
b)

Fig. 2 Assembly of the inner housing and the outer housing.

a)

b)

Fig. 3 Left: The shaft inside the inner bearing. Right: The forces acting at each ball of the back-up bearing.
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The dynamics of both housings are included in the mechanical model. The dynamic coupling between the inner
house and the rotor is introduced by the impact forces, N and the friction force F f ric. The beams that support the housings
have the stiffness calculated as clamped-clampled beam Kbeam =

48EI
Fa2(3l−4a) . and the damping coefficients approximated by:

ch = 2ζ
√

Kbeam (mih + moh) and cv = 2ζ
√

Kbeam (mih). (7)

Thus the governing equations of both housings are written in Equations (8) and (9)

mihÿih = −2k f tyih − 2cvyih − mihg + N sinα + F f ric cosα. (8)

(Moh + mih) ẍoh = −2k f t xoh − 2chxoh + N cosα − F f ric sinα. (9)

Consequently, the radial term rr can be calculated and allows one to know whether the system is impacting or not, and it
is equal to:

rr =

√
(βlOB − xoh)2 + (−ΓlOB) − yih)2. (10)

The impact is analysed at each time step if the rotor displacement at the position of the back-up bearing is bigger
or equal than the radial gap, δ ≥ r0 = r1 − rr. The impact is modeled following a stepwise elastic model proposed by
(Lankarani and Nikravesh, 1990):

Fimp = N = kimpδ
3/2
(
1 +

3(1 − e2)
4

δ̇

δ̇−

)
, if δ ≥ 0, (11)

in which the stiffness coefficient is given as:

kimp =
4

3
(

1−ν2s
Es
+

1−ν2i
Ei

)
(

rsr1

r1 − rs

)1/2
. (12)

Therefore, the forces acting on the mechanical model are the rotor’s own weight, the magnetic force and the damping
force plus the impact forces

IFg =


0
−mg

0

 , IFmag =


−K cosα
−K sinα

0

 , IFdamp =


−c cos ρ
−c sin ρ

0

 , IFimp =


N cosα
N sinα

0

 and IF f ric =


F f ric sinα
Fimp cosα

0

 .

(13)

Finally one writes Euler’s equation with respect to the supporting point O

∑
B3Force MomentsO =B3 IO

(
d
dt
ωB3

)
+B3 ω × (B3IO ·B3 ω) (14)

and solves the set of equation considering the angles Γ and β small. The motor has an independent control and is capable
to deliver the necessary torque to keep the angular velocity to θ̇. The differential equations are highly nonlinear with
many coupled terms and the solution is found using the symbolic program Maple�. However, we are more interested in
the position of the center of shaft at the backup bearing plane and using the transformation matrices, the coordinates are
written as:


X
Y
Z

 =
(

IT T
Γ (t) ·B1T T

β (t) −I T T
Γ (0) ·B1T T

β (0)
)
·B2rOC , (15)

where the initial conditions are taken into consideration, t = 0, Γ(0) = 0 and β(0) = 0.

2.3. The back-up bearing
When the rotor falls and hits the rolling back-up bearing, Figure 3, the friction force accelerates the inner race and

the spheres.The angular position of the inner race, θIr, is also a degree of freedom. Figure 3a illustrates a schematic view
of balls and inner race and their velocities. Since the outer race is not moving and the spheres are not sliding on the
touching point with it, point Osph, the tangential velocity is half of the one on the edge between the sphere and the inner
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race, point E. The force acting on one rolling bearing ball is shown in Figure 3b the following equations for one isolated
ball are written in (16)-(18):

∑
MomentOsph = Isphθ̈sph (16)

2rsphFi = Isphθ̈sph, since, vt = θ̇irr2 = θ̇sphrsph, (17)

2rsphFi = Isphθ̈ir
r2

rsph
, (18)

where Isph = 2/5
(
πr2

sph

)
+ msphr2

sph. Newton equation for the tangential direction leads to:

Fi + Ro = msphat. From (17) and (18), Ro + Isphθ̈ir
r2

2
(
rsph

)2 = msphθ̈irr2. (19)

Therefore the angular acceleration of the inner race, θ̈ir can be obtained taking into account the influence of all rolling
spheres j.

θ̈ir Iir = f r1 − r2

Nsph∑

j=1

(
Fi, j

)
, (20)

θ̈ir Iir = f r1 − r2Nsph

θ̈ir
Isphr2

2
(
rsph

)2

 → θ̈ir

Iir + Nsph
Isph

2

(
r2

rsph

)2 = f r1. (21)

3. Simulation and nonlinear analysis

3.1. Integration in time
The governing equations (14), (20), (8), and (9) are integrated in time using a combined Matlab differential equation

solver ode45 and a dedicated Runge-Kutta algorithm. The former is employed together with an Event function in order to
find the exact moment of the impact. The latter is applied during the short period of impact. It was done so, because it is
a highly stiff problem and demands an enormous time with very tight integration tolerances of the algorithm. Therefore a
test of convergence was performed and the adequate step time was set to 10−6 s. During the impact the relative velocity
between the shaft and the inner race, vrel, plays an important role. The friction force is dependent on it. If the velocities
match, there is no friction. Otherwise, the friction force is modeled as F = µNsign (vrel). The model parameters are shown
in table 1.

Table 1 Parameters set applied to the simulation.

Parameter of the shaft
Mass without unbalance m = 1.28 kg
Length to magnetic bearing rOC = [0, 0, 0.384m]
Length to rolling bearing rOB = [rr cos(α), rr sin(α), 0.211m]
Shaft diameter dr = 25 mm

Parameter of the rolling bearing
Inner diameter d1 = 2r1 = 28 mm
Inner race outer diameter d2 = 2r2 = 37 mm
Sphere radius rsph = 5.0 mm
Impact stiffness kn = 2.5 · 1010 N/m3/2

Friction coefficient µ = 0.20
Restituition coefficient e = 0.90

Parameter of the inner and outer house
Mass from inner house mih = 1.70 kg
Damping 1 ch = 7.04 · 102 Ns/m
Mass from outer housing Moh = 8.87 kg
Damping cv = 2.28 · 102 Ns/m

3.2. Simulated results and experimental comparison.
As mentioned before, the test rig is a rotor suspended at one end by a removable passive bearing. From the moment

that the magnetic force is removed, there are three distinct stages: a) the rotor free fall inside the bearing; b) contact
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Fig. 4 10 Hz simulated bifurcation for different unbalance levels together with 8 different experimental tests with
unbalance levels of: U1 = 0.0 g.mm, U2 = 15 g.mm, U3 = 21 g.mm, U4 = 30 g.mm, U5 = 105 g.mm,
U6 = 207 g.mm, U7 = 318 g.mm and U8 = 420 g.mm.

between rotor and inner ring surfaces occurs leading to the deformation of the compliant and surface and angular acceler-
ation of the inner race; and finally c) the relative velocities between the inner race and shaft surfaces almost vanish and the
rotor fins a steady state condition at the bottom of the backup bearing. In fact, since the rotor keeps executing small trans-
lational movement around the equilibrium and rarely the relative velocity will coincide.Though this steady-state general
dynamic behavior of the rotor changes significantly according to the unbalance level. After removing the magnetic force,
the rotor falls and impacts several times on the surface of the inner race. The energy will be dissipated by the damping
from the coupling between the inner and outer housing and from the impact with the compliant surface.

The changes in the steady-state behavior can be evaluated more explicitly with a Poincaré Map, Figure 4. The
variables Y , Ẋ and Ẏ are sampled every time the center of the shaft crosses the vertical line, in other words, when X = 0.
The first plot on the top of Figure 4 shows the vertical position, Y , through which the rotor crosses the vertical line as a
function of the control variable i.e. the unbalance, U.

Overall the phenomena are captured by both experiments and simulation. We can divide the bifurcation diagram into
three specific regions. First the rotor center is always crossing at the bottom of the shaft at Y = −1.5 mm in region (I).
Suddenly there is a change and more crossings at the vertical line occur. This can be seen in the region (II) of figure 4. The
more unbalance the more evident that the center of the shaft performs chaotic trajectories. In the simulation it is expected
to see the rotor crossing from the bottom to the top of the bearing, but the mechanical set up shows a gradual increase
in the vertical crossing as the unbalance gets bigger until the rotor is able to perform a full whirl. In the right end of the
plot, region III, the rotor is only executing a full whirl so the rotor is crossing the vertical line in the extremes, Y = −1.5
to Y = 1.5 mm. In the following plots, the horizontal and the vertical crossing velocity, Ẋ and Ẏ , are plotted against the
unbalance and, once again, the experimental and the simulation tend to agree to each other.

To visualize the existence of chaotic trajectories performed by the rotor center, a double-sided spectrum is displayed
in Figure 5a and b. Two levels of unblance are chosen: U = 207 g.mm from region (II) and U = 420 g.mm from
region (III). The noise is significantly raised and several other peaks appear. This is a clear indication that chaos is
happening. Higher unbalance levels show clearly higher peaks at Ω = −10.0 Hz than its opposite pair, confirming the
predominance of a full whirl at the same directions of the rotor spinning. Negative values of ω means the same spinning
direction of the rotor.
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Fig. 5 Experimental 10 Hz double sided spectrum of the radial displacement, the unbalance corresponding to
0.27 kg.mm a) belongs to region II. For the unbalance corresponding to 0.42kg.mm b) A clear dominance
of one peak at Ω = −10 Hz indicates the full whirl in the same direction the shaft rotates stays in the
region III.

4. Conclusion and Future Aspects

From the theoretical and experimental nonlinear analysis carried out in the paper, one can conclude that the rotor
-backup bearing system has three distinguished dynamical behaviors depended on the level of rotor unbalance. Zone (I),
characterized by low unbalance level from (0, 60] g.mm, simple oscillatory movementes of the rotor center at the bottom
of the backup bearing are see. Zone (II) by unbalance levels from (60 to 280] g.mm, chaotic motions followed by impacts
between rotor and backup inner race surface. Finally, zone (III) characterized by high unbalance levels, full forward whirl
of the rotor center takes place.

There is much more to explore in this problem. The magnitude of the forces at the three different zones changes and
supports the idea that it may damage the backup bearing. The relationship between the radii of the rotor and the inner race
may also affect the magnitude of the forces and should be investigated in the next future. Different material properties and
angular velocities shall contribute a lot to the response of the system and further results shall point in that direction.
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